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Abstract

We introduce a new algorithm for computing an approximately optimal binary
search tree with known access probabilities or weights on items. The algorithm is
simple to implement and it has two contributions. First, a randomized variant of the
algorithm produces a binary search tree with expected performance that improves
the previous theoretical guarantees (the performance is dependent on the value of
the input random variable). More precisely, if p is the probability of accessing an
item, then under expectation the item is found after searching lg 1/p+0.087+lg2(1+
pmax) nodes, where pmax is the maximal probability among items. The previous best
bound was lg 1/p + 1, albeit deterministic. For the optimal tree our upper bound
implies a non-constructive performance bound of H + 0.087 + lg2(1 + pmax), where
H is the entropy on the item distribution and the previous bound was H + 1. The
second contribution of the algorithm is a low cost in i/o models of cost such as
the cache-oblivious model, while attaining simultaneously the above bound for the
produced tree.

Key words: Data structures, binary search trees, entropy bounds, i/o models,
approximation algorithms

1 Introduction

Binary search trees (bsts) are one of the fundamental data structures in com-
puting. For ordered items, they enable efficient support for such operations as
search, insert, delete, successor, and predecessor. More informa-
tion on bsts, their operations, and implementation details can be found, e.g.,
in standard textbooks [5,9].
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Items stored in a bst do not necessarily have an equal status. For example,
searches for English words have different frequencies. Hence, it would be desir-
able to have a bst that stores items with given probabilities or weights such
that the expected cost of an access is minimal. Such a bst is called an opti-
mal bst. Computing an optimal bst is a classic problem for which Knuth [9]
gave a well-known algorithm. For n items, the time and space used by this
algorithm are both Θ(n2). The literature on the subject is vast and a num-
ber of O(n) or O(n lg n) time and space approximation algorithms have been
suggested [9,6,11,13] with varying assumptions on input and output.

We now give definitions used in this paper. As an input we have ordered
items (without loss of generality we set them to {1, . . . , n}) and associated
probabilities that we denote by pi for the item i. Additionally we can have an
access to an interval between items i and i + 1. We denote the probability of
this event by qi, and q0 and qn are respectively the probabilities of searching for
a smaller and larger item than what is stored in the bst. The cost of accessing
an item or interval equals its depth in the bst. The depth of an item is the
number of items that are accessed while searching for the item and hence the
root is at depth one. The depth of an interval is the depth of the parent of
the interval.

Most of the approximation algorithms are based on bounding the depth of an
item i with lg 1/pi + c, where lg is a binary logarithm, and c is a constant.
For example, Mehlhorn [11] gives an algorithm in which c = 1 for items and
c = 2 for intervals. The bound lg 1/pi + c is sufficient for approximating the
cost of an optimal bst, because the difference between the expected cost of
an optimal bst and entropy H =

∑n
i=1 pi lg 1/pi +

∑n
i=0 qi lg 1/qi is relatively

small. For example, Alon and Orlitsky [1] proved that the expected cost of the
optimal bst (with only internal items) is at least H − lg(H + 1)− lg e + 1.

In Section 2 we introduce an approximation algorithm, awobst (arithmetic
weight-optimal bst). This algorithm has two contributions.

• Recently the i/o -performance of algorithms has received increased atten-
tion, for example resulting in the cache-oblivious cost model [7]. In short,
in the cache-oblivious cost model we have a memory with a cache which
contains lines of size B words each, and we do not know B or the size of
the cache. Accessing the cache is free, but if a cache miss occurs then we
pay a unit cost for fetching a block of B words from the memory to the
cache. The objective of a cache-oblivious algorithm is to minimize the cost
in this model. We use the cache-oblivious model, because an algorithm that
takes into account the locality of memory accesses should perform well in a
problem that is memory intensive.

Previous algorithms for computing a weighted bst have not been analysed
in an i/o-model; usually the items are processed from the root towards the
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leaves, which implies that the i/o cost is not low. There is one exception
we are aware of: the cache-oblivious algorithm of Brodal and Fagerberg [3]
attains the bound of 2(dlg 1/pie + 1) for the depth of the item i. However,
this is far from the bound of lg 1/pi + 1 that other algorithms attain, and
in data structures such difference is significant. We analyse awobst in the
cache-oblivious model and show that it causes O(n/B) cache misses, while
it also simultaneously attains the lg 1/pi + 1 bound. Additionally, the cost
is O(n) in the traditional unit cost model.

• Mehlhorn has shown that if only H and
∑n

i=0 qi are known then the best
possible upper bound for the expected cost of an optimal bst is H + 1 +∑n

i=0 qi [11]. There is a non-constant gap between the lower bound in [1] and
this upper bound, because H and

∑n
i=0 qi do not completely characterize

the cost that an optimal bst must pay. However, for the special case of the
alphabetic search tree, where

∑n
i=0 qi = 1, there are bounds that depend

on other information, for example H + 2− q0 − qn [13], but for the general
problem there are no such bounds. The closest bound is for a related problem
where the items are not necessarily stored in key order, i.e., they are words
of a code that is not prefix-free. This bound is H + 1 − pmax lg 1/pmax [2],
where pmax ≤ 0.5 is a maximal probability on items.

We give an improved bound for the general problem; a randomized variant
of awobst has an expected (taken over randomness in the algorithm) upper
bound H +0.087+ lg (1 + (p + q)max)+

∑n
i=0 qi for the cost. Here (p+ q)max

is the maximal probability over pairs of an adjacent item and an interval,
i.e., maximum over pairs of either qi−1 + pi or pi + qi. Our bound essentially
changes the 1 in Mehlhorn’s bound to 0.087 + lg (1 + (p + q)max). For the
special case when (p + q)max < 2/3 we also give a better bound H + 0.503.
If
∑n

i=1 pi = 1 the bound is H +0.087+ lg(1+pmax), and for
∑n

i=0 qi = 1 the
bound is H +1.087+ lg(1+ qmax). Note that these bounds are deterministic
bounds on the optimal bst.

The structure of the bst produced by awobst is different from the other
algorithms cited, although there are very close similarities between the rule
that awobst uses and what the others use, for example the ones in [11,10].
Most closely the structure of the bst bears a resemblance to the code words
assembled in the arithmetic coding [12]. The algorithm itself is quite simple
and we have implemented it on integer weights (rational weights reduce to the
integer weights).

In the rest of this paper we consider a situation where the probabilities qi are
zero, i.e., no accesses to intervals. We make this assumption only to simplify
our presentation and it does not restrict the problem we solve, because we
can do a reduction. In the reduction we redistribute the probability mass on
the leaves to probabilities of the internal (possibly dummy) items and the
bst is constructed with these probabilities. More precisely, assign modified
probabilities p′i = pi + qi−1/2 + qi/2 to internal items and construct a bst on
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Table 1
Computing an arithmetic weight-optimal bst (awobst)

Input: a sorted array of items {1, . . . , n}, each having a probability or “weight”
pi > 0.
Output: a bst in which each item i is assigned a depth of lg 1/pi +1 or less. Recall
that the root is at depth one.
Assumptions: the algorithm has an auxiliary stack which contains roots of tempo-
rary bsts and is initially empty. By stack[top] we refer to the top of the stack and
the item below it by stack[top-1] (read only access). A depth-restriction constant is
attached to each item in the stack, and “.d” is used to refer to this; e.g., the depth-
restriction constant for the item at the top of the stack is stack[top].d. The function
first diff bit returns the position of the first differing bit in its arguments (from
the more significant part and with position one being the first fractional bit). An
operation automatically fails, if it does not have enough operands. Nodes remain in
the memory allocated from the stack until explicitly stated otherwise.

(1) Initialize S := 0.

(2) For each item i in order of key values:

(a) If i is the last item then set di := first diff bit(S, 0.111 . . . ),
else set di := first diff bit(S, S + pi).

(b) While di < stack[top-1].d < stack[top].d do
pop nodes T1 := stack[top-1] and T2 := stack[top],
place the node T2 to memory,
link T2 as the right child of T1, and
push T1 to the stack.

(c) If di < stack[top].d then
pop node T := stack[top],
place the node T to memory, and
link T as a left child of item i.

(d) Push the item i with di to the stack.
(e) Set S := S + pi.

(3) Link all trees still in the stack, i.e., set the right child of each bst, not including
the top of the stack, to the bst that is one step closer to the top of the stack.

the internal items according to these modified probabilities. Observe that an
interval is a child of an adjacent internal item and so its cost is the maximum
of their depths. Also, the maximum of the log-probabilities of the adjacent
internal items is bounded: max

(
lg 1/p′i, lg 1/p′i+1

)
≤ lg 1/qi + 1. The bounds

given in this introduction are obtained from this reduction.
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Table 2
An illustration of a building process with five items, the probabilities are given
in binary. Note that the stack contains only the roots of the corresponding bsts,
although for clarity we give full bsts. The depth-restriction constant for each tree
in the stack is given in the sub-script to the root node.

item i 1 2 3 4 5 final tree

probability pi 0.01 0.001 0.001 0.01 0.01

3
1
2

4
5

∑i
j=1 pj 0.01 0.011 0.100 0.11 0.111 . . .

di 2 3 1 2 3

stack after i

1
2

top

2
3

top

1
2

3
1

1
2

top

4
2

top

3
1

1
2

5
3

top

3
1

1
2

4
2

2 Description of the Algorithm

The algorithm awobst is given in Table 1. We now explain its basic idea.
Let p1, . . . , pn > 0 be the probabilities on items 1, . . . , n. Assume without loss
of generality that the key value equals the item number. Let S0 = 0 and let
Si = Si−1+pi. Assume that Sn = 0.1111 . . . in binary. Give an item i a priority
that is the first bit where Si and Si−1 differ and define that the first fractional
bit is given a priority of one. Create a bst that is in heap order according to
the priorities on the items.

awobst efficiently performs this in a way resembling the construction of the
Cartesian tree in [8]. Moreover, each item is assigned to a depth less or equal
to the given priority. Note that the depth of the root is one. For example, if
Si−1 = 0.10011 in binary, and pi = 0.00110, then Si = Si−1 + pi = 0.11001
and hence the item i is placed to a depth of two or one in the final bst. We
also give an example of the building process in Table 2. Let us discuss how the
item 3 is processed. The depth-restriction constant for the item 3 is 1, which
is less than the one for the item 2 at the top of the stack. Hence, we know that
the item 2 should be in the subtree rooted at the item 3. Before we link the
item 2 to the item 3, we must make sure that all items in the left subtree of
the item 3 will be linked to it. Thus, we go through the stack and notice that
the item 2 should be linked to the item 1 before linking them to the item 3.
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3 Analysis of awobst

This section contains an analysis of awobst. The analysis is divided to three
steps. First we show that for depth-restriction constants di it holds that di ≤
lg 1/pi + 1. Then we show that awobst is correct. Finally, we demonstrate
that in theory a simple random modification to awobst gives an expected
bound to depth-restriction constants that is lg 1/pi + 0.087 + lg(1 + pmax).

3.1 Depth-restriction Constants are Logarithmic

In the description of awobst, each item i is assigned a depth-restriction con-
stant di. This di is the position of the most significant changing bit between∑i−1

j=1 pj and
∑i

j=1 pj. These two sums differ by pi and hence,

pi

2
≤ 2−di ⇐⇒ di ≤ lg

1

pi

+ 1,

because di is at least the position of the first set bit of pi.

3.2 awobst Produces a bst with Depth-restriction Constants

We give the following bound:

Theorem 1. awobst places an item i with probability pi to a depth of at
most di ≤ lg 1/pi + 1.

Proof. The claim follows from the invariant B below, because the root of the
final bst has a depth restriction constant dr of one.

A Each item i in the stack has a smaller depth-restriction constant di than
the one closer to the top of the stack.

B Each item i in any bst rooted at a node in the stack is at any time during
the execution found in its bst at a depth less or equal to di − dr + 1,
where r is the root of that bst.

Proof of invariant A. We use an induction on the items. Empty stack
satisfies the invariant. Assume an induction hypothesis that the current stack
conforms to the claim. Let there be an item i which causes the stack to violate
the induction assumption. Although the while loop can modify the stack, it
can not violate the induction hypothesis, because of the condition of the while
loop. So when we push the violating item i to the stack during the step (d),
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there is a bst with a root k in the stack such that dk = di; depth-restriction
constants larger than di are not a problem in the stack, because the while loop
and the if clause during steps (b) and (c) take care of them and values smaller
than di do not violate the induction hypothesis.

We observe the following fact: if for items i and k it holds that di = dk then
there is an item j such that k < j < i and dj < di = dk. This is true because for
each two changes in the same bit in the sum of probabilities, a more significant
bit must also change. Hence, an item j is in the stack between items i and
k, because items are handled in key order, and thus there is a contradiction
of the induction hypothesis which stated that depth-restriction constants are
larger near the top of the stack.

Proof of invariant B. We do a similar induction as with the invariant A.
Assume a stack that is conforming. Using the invariant A it is easy to see
that each link operation on bsts, whether in the while loop or in the if clause,
maintain the induction hypothesis. More precisely, each increase in the depth
of any item is countered by a smaller depth restriction of the new root.

3.3 Randomized Analysis Gives a Better Bound

Careful examination of the proof leading to Theorem 1 reveals that the bound
lg 1/pi + 1 is tight only in a malign situation. The depth is at most the first
changing bit between binary numbers

∑i−1
j=1 pj and

∑i
j=1 pj and hence the worst

case is attained when the first bit is as far from lg 1/pi as possible. This happens
when the binary number pi is of form 0.0 . . . 01111 . . . 1, which intuitively is not
very common so we should get a better bound. We formalize this intuition in
the following theorem, where we randomize bits of pis by adding two random
dummy items 0 and n + 1.

Theorem 2. Choose a positive integer m such that pmax < 2r for r = 1/(2m−
1). Use a dummy item 0 and set p0 to a uniform random number on [0, r). Let
another dummy item n + 1 have a probability pn+1 = r − p0. Then set p′i to
pi/(1+r) so that the values p′i sum to one and form a probability distribution.
If awobst is given an input with probabilities p′i then the expected depth of
any item i is limited by lg 1/pi + 0.087 + lg(1 + r).

Proof. From the definition of the constant r it follows that p′0 is uniformly
distributed in [0, 2−m) and the binary form of p′0 is

p′0 = 0. 0 . . . 0︸ ︷︷ ︸
m

r1r2 . . . ,

where rj are uniform random bits. The binary representation 0.b′1b
′
2 . . . of
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∑i−1
j=0 p′j has random bits at positions following the first set bit of p′i. This

follows from the fact that each such bit b′l is of the form (bl xor rl−m xor cl),
where bl is the corresponding bit in the sum

∑i−1
j=1 p′j, rl−m is a random bit

from p′0, and cl is the carry bit of the summation which is independently
random from rl−m. Note that m < l, because we assumed that pi < 2r, so the
p′max < 2r/(1 + r) = 1/2m−1 is upper bounded:

pmax ≤ 0. 0 . . . 01︸ ︷︷ ︸
m

11111 . . . .

Therefore, we can write
∑i−1

j=0 p′j in the following binary form:

i−1∑
j=0

p′j = 0.b′1b
′
2 · · · = 0. z1 . . . zk−1︸ ︷︷ ︸

arbitrary bits

y1y2 · · · ≥ 2−k y,

where y = 0.y1y2 . . . is a uniform random number in [0, 1). Also, write p′i in
binary as

p′i = 0. 0 . . . 0︸ ︷︷ ︸
k−1

1x1x2x3 · · · = 2−k x,

where x is a binary number 1.x1x2x3 . . . in [1, 2) and xj are arbitrary bits. We
can now upper bound the position of the first changing bit between

∑i−1
j=0 p′j and∑i

j=0 p′j with the position of the first set bit of the binary number 2−k y+2−k x.
This is because the arbitrary bits from z1 to zk−1 can only decrease the position
of the first changing bit.

Subtracting lg 1/p′i from the position k of the first set bit in p′i yields lg x, i.e.,
k = lg 1/p′i +lg x. If x+y ≥ 2 then the carry bit makes the position of the first
set bit in 2−k y +2−k x better than k and we have a gain of at least lg x− 1 in
comparison to lg 1/pi. Otherwise we have a regret of lg x. Let p(x + y < 2) be
the probability that x+ y < 2. We observe that p(x+ y < 2) = 2−x, because
x ∈ [1, 2) and y was random in [0, 1). Hence the expected regret with respect
to lg 1/p′i is:

p(x + y < 2) lg x + p(x + y ≥ 2)(lg x− 1) = 1− x + lg x ≤ lg

(
2

e lg e

)
< 0.087.

In addition, we had a rescaling of probabilities by 1/(1 + r), which implies

lg
1

p′i
= lg

1 + r

pi

= lg
1

pi

+ lg(1 + r).

The claim follows.

For r = 1/3 we obtain the following corollary:

Corollary 3. Theorem 2 applied to r = 1/3 produces a bst with expected
depth of lg 1/pi + 0.503 or less for the item i if pmax < 2/3.
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An item with probability more than 2/3 should always be placed to the root,
which we can prove by first assuming the opposite and then deriving a contra-
diction. Hence, the restriction pmax < 2/3 matters only little when comparing
performances of bsts, because we know the root of the optimal bst and new
bounds can be derived on the sub-trees.

Although Theorem 2 and Corollary 3 do not give a deterministic bound, due
to linearity of expectation, they apply to some variant, and thus to the optimal
bst (i.e., that obtained using Knuth’s method). Hence, we obtain the following
corollary.

Corollary 4. The cost of an optimal bst is upper bounded by H + 0.087 +
lg (1 + pmax) , where H is entropy of the item probabilities.

4 Resources

In i/o-models awobst touches each item in the input once in the key order
and also uses a stack. The number of push and pop operations is limited by
the number of edges in the final bst, which is n−1. Additionally, the nodes of
the resulting bst are placed to the memory when their parent is set and this
modifies information only in the parent which is a temporary variable. Hence
there are O(n/B) cache operations if the cache contains at least five lines with
length B, one for the input, two for the stack, one for the output, and one for
the temporary variables. Of course, the input must be in a format where we
can efficiently iterate the items, such as an array. We do not consider how to
make the constructed bst perform well in the cache-oblivious model, as this
is a separate problem, but note that if necessary we can achieve this using the
standard time-forward processing technique [4].

An argument for O(n) cost in the unit cost model follows similarly after noting
that the first diff bit (a, b) for integers is the first set bit in a xor b. In
theory the first set bit can be computed as a unit cost operation and in practice
many hardware platforms (for example x86 and ARM) implement it as an
instruction for integers. first diff bit for floating point values reduces to
the integer version of the problem.

5 Conclusions

We gave an algorithm which produces a binary search tree with guarantees
of 1 + lg 1/(probability) for the depth of any item with known probability.
Furthermore, the bound can be expected to be better for a typical input
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which implies that the entropy is a tighter measure for the cost of an optimal
bst than previously thought. Running time of awobst is linear in unit cost
model and it causes few i/o-operations.
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