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Abstract. We study the problem of finding the most uniform parti-
tion of the class label distribution on an interval. This problem occurs,
e.g., in supervised discretization of continuous features, where evaluation
heuristics need to find the location of the best place to split the current
feature. The weighted average of empirical entropies of the interval label
distributions is often used in this task. We observe that this rule is subop-
timal, because it prefers short intervals too much. Therefore, we proceed
to study alternative approaches. A solution that is based on compression
turns out to be the best in our empirical experiments. We also study
how these alternative methods affect the performance of classification
algorithms.

1 Introduction

We consider the problem of processing labeled and sequential data into inter-
vals — contiguous subsequences — that can be utilized in prediction. This task
is encountered, e.g., in the discretization of numerical attributes when learning
classifiers. Top-down greedy heuristics reduce this problem to a simpler one [1]:
How to rank and compare the uniformity of two adjacent intervals?

Arguably the most often used measure of uniformity of adjacent example
intervals is the weighted average entropy over the class label distributions [2].
Using entropy is a well-founded approach that should in principle lead to good
results. We cannot, however, compute the true entropy underlying the label dis-
tribution. Instead, we need samples to estimate it through the observed empirical
entropy.

We will evaluate the suitability of the empirical entropy in finding the least
uniform intervals. Our empirical evaluation shows that the estimation of entropy
often fails in this task, because it prefers too short intervals.

A similar and related problem occurs in the top-down induction of decision
trees, where the tree-building algorithm searches for the most informative at-
tribute. It is known that criteria based on empirical entropy prefer too much
attributes with several values. On the other hand, in the interval selection prob-
lem we only have two values for the attribute — the left and the right interval.
Hence, the failure does not occur because of too many values for the attribute.
See the previous work discussed in [3] for more information on attribute selection
in decision trees.



The reasons behind this suboptimal behavior of empirical entropy in deci-
sion trees and in splitting an interval are similar. First, the estimation error
of entropy is significant, and even more so when fewer samples are available. In
particular, this error is biased towards intervals with less data, and some interval
pairs always contain a short interval, because we consider all splits of a larger
interval. Second, perhaps a more minor reason is that minimizing entropy does
not necessarily coincide with minimum empirical error. Kohavi and Sahami [4]
discuss entropy-based and error-based discretization more generally.

In this paper we evaluate three simple approaches intended to rectify the
problems of the approach based on empirical entropy. The methods also take
into account the number of samples that is available to estimate the distribu-
tion. Previously, only the empirical frequencies have been used. We evaluate
these three approaches by generating synthetic data from known distributions
and observing the distributions of the resulting split points. Our empirical eval-
uation demonstrates that in terms of reducing the absolute error, the proposed
approaches are successful, but their utility in improving prediction error of Näıve
Bayes (nb) is smaller.

In the next section we introduce the required preliminaries for the rest of the
text; the nb classifier and the recursive entropy heuristic. Section 3 illustrates
the failure of average empirical entropy in always choosing the best split point.
We also provide a theoretical explanation for this shortcoming. In Section 4
three approaches that try to overcome the problems are put forward: The first
approach is based on choosing the split point that yields the best compression of
class labels. We can also consider it as maximizing a certain posterior likelihood.
In the second approach the maximum likelihood estimation of probability in en-
tropy calculation is replaced by a Bayesian estimate. The third approach replaces
entropy with another function with different concavity properties. Section 5 eval-
uates the proposed approaches empirically. The implications for classification of
the approaches studied in this paper are the topic of Section 6. In particular, we
consider nb and test the implications also empirically. Finally, we put forward
the concluding remarks of this work.

2 Preliminaries

Let us first introduce the nb classifier and then discuss how it relates to dis-
cretization and finding non-uniform intervals. Let y denote a variable that takes
a value of a class label, and let x denote a vector of d features 〈x1, . . . , xd〉.
We are given a set of n examples {(x1, y1), . . . , (xn, yn)}. In the nb classifier
we assume that the features are statistically independent given the class, which
results in the following probability for a label y given a vector x:

P(y | x) ∝ P(y)
d∏

i=1

P
(
xi | y

)
,

where xi are the independent features. The nb classifier then selects the label
with maximal probability. Note that although the statistical independence is



Table 1. The emp-ent split point selection method and the recursive entropy heuristic.

Function emp-ent
Input: An interval I.
Output: Two subintervals (I1, I2) which partition I.

Algorithm: For all class labels yj , j = 1, . . . , m, let bPI(yj) stand for the empirical
probability of observing label yj on interval I. In other words, it is the ratio of
labels yj to all labels in interval I. Now, the empirical entropy of the class label
distribution of I is bH(I) = −

mX
j=1

bPI(yj) lg bPI(yj).

Let |I| denote the number of examples in interval I. The average empirical entropy
of a particular split (I ′

1, I
′
2) is

|I ′
1|

|I|
bH(I ′

1) +
|I ′

2|
|I|

bH(I ′
2).

Return the split that minimizes the average empirical entropy.

Function Recursive Entropy Heuristic
Input: An interval I.
Output: A contiguous sequence of subintervals (I1, . . . , Ik) which partitions I.
Algorithm: Out of all splits (I ′

1, I
′
2) select the one given by the emp-ent method. If

a stopping criterion, such as the mdl rule used by Fayyad and Irani [2] is satisfied,
then return only I. Otherwise, return a concatenation of outputs of recursive calls
to the recursive entropy heuristic with inputs I ′

1 and I ′
2.

used to derive the decision rule, the nb classifier does not necessarily fail if
features are correlated, because it works as long as the correct label has maximal
probability [5–7].

For discrete features the marginal probabilities P
(
xi | y

)
are easy to estimate

by counting from the training examples. One usually smooths the count e.g.,
with a Laplacian estimate, to prevent assigning the zero probability to some
events. Continuous features are more difficult to deal with, but there are several
solutions for handling them, none of which appear to dominate the other [8].

Discretization is a solution in which an interval is divided into discrete bins,
and the marginal probability is estimated by counting the items that fall into
these bins. This approach has attracted significant attention [9]. The best per-
forming methods are founded on recursive entropy heuristic [1, 2]. Its aim is to
minimize the empirical entropy of the bins, while avoiding creating adjacent bins
that appear to come from the same underlying distribution. For k bins, the num-
ber of possible bin borders for n items is

(
n−1
k−1

)
, which scales in O

(
nk−1

)
(we

do not accept empty bins in this count). Hence, a brute force approach to the
combinatorial explosion is unattainable.



Thus, the recursive entropy heuristic uses the greedy top-down approach.
In it one successively splits in two the interval yielding minimum entropy until
some stopping criterion is satisfied. This heuristic is detailed in Table 1.

3 How Minimizing Empirical Entropy Can Fail

We have observed empirically that the emp-ent rule often proposes using a very
short interval— from one to five items. This behavior appears to be a result of
random noise in the labels, rather than a correct decision. In this section we
first discuss the suitability of using the entropy in finding a location to split, and
then proceed to study how empirical estimation of entropy is difficult.

3.1 The Role of Entropy in Selecting Uniform Intervals

The 0/1-loss is the probability of predicting a wrong label. It gives a simple
method to select the split location: minimizing the 0/1-loss of the resulting
subintervals. In this case we predict the majority label on each subinterval.
However, 0/1-loss is blind to those differences in the label distribution that do
not change the majority label [9, 10].

For example, if the most likely label remains the same on the whole interval,
then the 0/1-loss of all possible splits is the same constant. Naturally, if we use
these subintervals to predict labels under 0/1-loss, then it is not useful to split
the interval in this case. Nevertheless, if we combine the prediction from this and
another feature, then we would like the combined predictor to perform well. In
this case the interval should be split at the location where it provides the least
error for the combined predictor.

This is the motivation for minimizing the joint entropy of subintervals, it can
distinguish changes of the label distribution. For example, let p(x) denote the
probability of generating the label a at the position x on the interval, and let
1 − p(x) be the corresponding probability for the label b. Then the analysis of
the Lagrangian reveals that the entropy is minimized only in those locations in
which either the majority label changes or the derivative p′(x) is zero.

However, minimizing entropy does not necessarily minimize 0/1-loss, al-
though these two often coincide in practice. Figure 1 illustrates a situation in
which the entropy prefers to split at a location where the resulting subintervals
are non-uniform. The 0/1-loss, however, is minimized at another location. Hence,
using entropy is not justified if we, for example, have a single feature and want
to select a single split point on it for a further use in the nb classifier.

Note also that, although the first split point may minimize 0/1-loss, the
second does not necessarily give the minimum 0/1-loss for two split points. In
the situation of Figure 2 the entropy is minimized in the middle. However, the
two split points that minimize 0/1-loss are at the locations in which the most
likely label changes.

Therefore, both 0/1-loss and entropy fail in some sense. The loss is blind to
some differences in the label distribution, and the entropy fails to provide the
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Fig. 1. Entropy and 0/1-loss as functions of a split point on the interval [0, 1]. The
distribution that generates labels a and b is also shown. The probability of label a
changes from 0.6 to 0.35 at the location 0.33 and to 0.1 at the location 0.66. The
optimal split point is at the location 0.66 according to entropy, but at the location 0.33
according to 0/1-loss.

minimum 0/1-loss. However, in experiments the entropy usually performs better
than minimizing 0/1-loss [4]. Two facts could provide an explanation. First, the
problem domains have several features, so several features jointly interact in
prediction. Second, due to the recursive nature of the heuristic, the splitting
continues until 0/1-loss is minimized or nearly minimized. A small data size
might be a problem in this case.

3.2 Empirical Estimation of Entropy

Although entropy is an acceptable measure, we cannot use it directly, because it
depends on the hidden underlying distribution. Instead, we have a sample from
this distribution. It is known that entropy is difficult to estimate; for instance,
there is no unbiased estimate for it [11]. More information on the estimation of
the entropy is given, for example, in [11, 12].

Let us first give a simple demonstration of using the empirical entropy in our
application of splitting an interval and, then, a reasoning behind the observation.
Figure 3 illustrates the distribution of the optimal split point according to emp-
ent rule of Table 1 on two separate class label distributions. In both cases thirty
class labels were drawn so that class label a initially has probability 1/3 and after
the change point probability 2/3. The change point in distribution A is located
in the middle and in distribution B after the fifth item. Ten thousand random
intervals were drawn from both distributions.

For both label distributions the correct change point is clearly the most often
identified split point location, but there are also noteworthy concentrations at
both ends of the interval. These concentrations have no particular justification,
they are just bogus local optima. In Section 5 we observe that this behavior
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Fig. 2. Three Gaussians generate three labels. Both entropy and 0/1-loss are minimized
in the middle. For two split points the 0/1-loss is minimized at the locations, where
the most likely label changes.
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Fig. 3. The optimal split point distribution according to the emp-ent rule, for two
different distributions of the intervals. Ten thousand random intervals were generated.

occurs, regardless of the interval length, if the optimal split point location of the
distribution is unclear.

Let us consider the reasons for the phenomenon illustrated in Figure 3. Let p
denote the real distribution on an interval under consideration and let p̂ denote
the empirical distribution of a draw from p. The empirical entropy Ĥ = H(p̂) is a
random variable of labels drawn from p. Two factors contribute to the difference
between H = H(p) and Ĥ [13, 6, 14]:

1. The bias, which we define as

H (p)−E(H (p̂)) .

2. The variance, which tells how much H(p̂) changes around its expectation:

E
(
(H (p̂)−E(H (p̂)))2

)
.
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Fig. 4. The concave binary entropy function. Note how the expectation (average) of
entropies at points P1 and P2 is less than the entropy of their expectation.

It is well known that the mean squared error (mse) of estimation is related to
these values [6]:

E
((

Ĥ −H
)2

)
︸ ︷︷ ︸

mse

=
(
E

(
Ĥ

)
−H︸ ︷︷ ︸

bias

)2

+ E
((

Ĥ −E
(
Ĥ

))2
)

︸ ︷︷ ︸
variance

.

Both the bias and variance are affected by the concavity of entropy H(p).
Jensen’s inequality [15] asserts that for any concave function f it holds that

E(f(X)) ≤ f (E(X)) .

An immediate consequence is that

E
(
Ĥ

)
= E(H (p̂)) ≤ H (E(p̂)) = H (p) = H.

For example, the empirical entropy of one sample is always zero.
Another complication is the variance of the empirical entropy. Let p̂ml be the

maximum likelihood estimate of p. The estimate is unbiased, but it naturally
has a high variance with small sample sizes. This variance can result in larger
than expected deviations in Ĥ for small values, because the entropy H grows
fast around a non-uniform distribution. For example, if we draw 30 labels from
a distribution over the labels {a, b} with P(a) equal to 1/5, then H = 0.72 and
E(Ĥ) = 0.7. Although these values are close to each other, the probability that
Ĥ > E(Ĥ) is 0.57. This implies that low values for Ĥ are further from E(Ĥ)
than high values for it.

Of course, both the bias and the variance tend to zero as the number of sam-
ples grows, because the maximum likelihood estimate p̂ml concentrates around a
point and the entropy is almost linear in the neighborhood of this point. Jensen’s
inequality is strict when the concave function f is linear and, in fact, the differ-
ence f(E(X)−E(f(X))) depends on the “curvature” of f . Figure 4 demonstrates
this graphically.



4 Alternatives to Empirical Entropy

We now study three alternative solutions to the problem(s) identified in the
previous section. They differ in their justification and operation. We will study
their performance empirically in the next section.

4.1 COMPRESS: Compression

There is another potential justification for the empirical entropy, compression.
The mdl principle, roughly, advocates the selection of the model that compresses
the data the most [16].

If we know p̂, then H(p̂) is approximately the expected number of bits needed
to encode labels from the distribution p̂. However, this is not equal to compress-
ing the interval I, because we know the exact number of labels, not just their
probabilities. In addition, p̂ is unlikely to be close to the true distribution for
small sample sizes.

If we know the empirical frequencies of the labels on an interval I, then we
can compress it by identifying the permutation that transforms a known interval
to I. The number of permutations of the labels on I is

Perm (I) =
(

n

n1, . . . , nm

)
=

n!
n1! · · ·nm!

,

where n is the number of items on the interval I and ni is the number of items
with label i. Therefore, the interval I can be identified with lg Perm (I) bits, if we
know the original permutation that is being transformed to I. This permutation
depends on the label counts, which in turn depend on the location of the split
point. There are

(
n+2(m−1)+1

2(m−1)+1

)
possible ways to assign these, because in addition

to one split point we select for both subintervals (m−1) dummy items that mark
the empirical counts of labels. Note that here we allow empty intervals. As the
above count is the same for both subintervals, we can ignore it.

Hence, the compress method, given in Table 2, selects the split point that
compresses the labels the most. Previously Kononenko [17] has suggested a sim-
ilar rule for decision trees. Note that compress has a relation to the entropy:

lg Perm (I) = lg n!−
m∑

i=1

lg ni!

H (p̂ml) = n lg n−
m∑

i=1

ni lg ni.

Stirling’s formula asserts that n! ≈
√

2πn(n/e)n, and so lg n! ≈ n lg n− n lg e.
compress also has a probabilistic justification. Generate p according to a

uniform prior distribution for the possible vectors and then generate I from p.
Then the probability of observing an interval I is

P(I) =
(

n + m− 1
m− 1

)−1(
n

n1, . . . , nm

)−1

, (1)



Table 2. compress: Selection of the best split point.

Input: An interval I.
Output: A splitted interval (I1, I2) that partitions I.
Algorithm: For each candidate split (I ′

1, I
′
2) calculate the following value

Perm
`
I ′
1

´
· Perm

`
I ′
2

´
,

and return the candidate with the smallest value.

which follows from the normalizing constant of the Dirichlet distribution [18].
The first part consists of the possible empirical frequencies, and is the same for
all frequencies. The second part depends on the empirical frequencies and it is
lg Perm (I). Therefore, if we set the prior probability of a split point to be

P(split at (I1, I2) | I) =

(|I1|+m−1
m−1

)(|I2|+m−1
m−1

)(|I|+2(m−1)+1
2(m−1)+1

) ,

then we select the same decisions as compress. Note that P(split at (I1, I2) | I)
is a proper probability distribution, because it sums to one.

The numerator in the above equation is Θ(|I1||I2|)m−1, in which the depen-
dence on m and |I| is ignored. Hence, compress maximizes a posterior likelihood
that gives more prior probability to splits in the middle of the interval. This is
intuitive in the sense that we have more information available for these splits.

4.2 BAY-ENT: Bayesian Estimation of the Real Distribution

Another simple approach is to give an estimate p̂ of p and use it to estimate
the entropy. We already observed that the maximum likelihood estimate can
perform poorly, so let us evaluate a Bayesian estimate of p.

First, we note that a good estimate for entropy is not necessarily what we
want. For example, one correction, which takes into account part of the bias of
the empirical entropy, is the Miller-Madow estimate Ĥ(I) + (m − 1)/|I| [11].
However, using this estimate gives the same result as using only Ĥ(I), because
after averaging the entropy estimates we add the same constant to the value of
each split.

Let us study a Bayesian estimate for p, where we give a prior probability
P(p) for each p. Then, after observing our data I, we can update our beliefs on
the distribution of p:

P(p | I) ∝ P(I | p)P(p) .

We choose the uniform prior on p, which gives an equal likelihood to observing
any combination of empirical frequencies, as a corollary to Equation (1). The



posterior is a distribution over p, but for simplicity we want a single point
estimate. It is known, as Zhu and Lu [19] note, that the Dirichlet prior P(p) ∝∏m

i=1 pxi−1
i gives a posterior with the expectation

p̂bayes =
(

x1 + n1

x + n
, . . . ,

xm + nm

x + m

)
.

Setting the xis to one we obtain our desired point estimate. Note that we can
interpret also this method as maximizing a likelihood, because the entropy H(p̂)
equals − lg P(p̂ | p̂).

If the real p is generated according to the prior that we use, then the esti-
mated posterior gives the true posterior distribution. Hence, in this case p̂bayes

is a good estimate. Unfortunately, often in practice the prior does not hold.
Then, theoretically, relatively little can be guaranteed, except that the posterior
converges to the real p with enough samples (if the prior is non-zero every-
where) [20]. In this case Gelman [21] suggests trying several non-informative
priors, and trusting the results if they agree.

4.3 CONC: Preferring Non-Uniform Intervals Less

Let us also study how changing the objective function from entropy to another
concave function affects the performance. Note that any symmetric concave func-
tion with a mode at the uniform distribution gives the same ranking for two
distributions. However, the decisions differ when pairs of distributions are com-
pared with each other, as is the case with possible splits of an interval. More
concave functions prefer a split point with more non-uniform intervals.

One problem that we identified with the empirical entropy was the suscep-
tibility to random noise in the labels. This was caused by the preference to the
non-uniform intervals. We suggest the following function, which is nearly linear
as a function of distance to the uniform distribution.

conc(p) =
(

1−
‖u− p‖2

Z

)1−ε

,

where u is the uniform distribution, Z is the normalizing value max ‖u− p‖2,
and ε is a small value, such as 0.99.

As this function resembles 0/1-loss, we expect it to fail in similar conditions.
On the other hand, it behaves better near a non-uniform distribution. Hence, it
is interesting to see its performance. Note that we use conc(p) instead of a linear
function, because it prefers non-uniform pairs. A linear function would give the
same rank for all splits, where the majority label does not change. This is often
the case when we empirically estimate the distribution, because the sample size
is restricted.

Kearns and Mansour [22] have analyzed in connection of decision trees top-
down algorithms that are related to discretization. In fact, these algorithms solve
the same problem when restricted to a continuous feature. The authors proved
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Fig. 5. A quick comparison of functions with different concavity. The distribution that
generates the labels and the majority label both change in the middle.

Table 3. Mean squared errors in the tests of Figure 6.

EMP-ENT COMPRESS BAY-ENT CONC

b) 317.50 231.75 272.90 202.91

c) 48.49 44.59 50.60 56.64

d) 15.79 14.25 13.46 11.47

e) 43.89 41.46 41.38 40.51

f) 0.49 0.46 0.44 0.43

formal bounds in the PAC framework. Their analysis suggest using a function
that grows faster than the entropy around non-uniform distributions,

G(p) = 2
√

p(1− p).

However, as we have noted, using a concave function is dangerous with small
sample sizes. Figure 5 demonstrates this empirically.

5 Empirical Evaluation of the Suggested Solutions

The illustration in Figure 3 gave one example of the behavior of emp-ent
method, but it does not tell how often we observe, or suffer, from this behavior
in practice. We now give results for several different kinds of experiments, and
also compare emp-ent to the methods put forward in the previous section.

Figure 6 plots the results of six different tests and Table 3 gives the corre-
sponding mse values. In it mse is measured from the distance to the correct
split point, which is defined by the entropy of the generating distribution. We
use mse in order to penalize more for splitting significantly away from the true
location.

In test a) the intervals are generated from a uniform distribution. Hence,
there is no correct place to split, because all subintervals are similar. In the
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b) Distribution changes slightly at the middle
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c) The majority label does not change.
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d) Distribution slides significantly
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e) Distribution slides from 0.3 to 0.7
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f) Three labels from overlapping Gaussians

Fig. 6. Comparison of the methods for six different distributions for the interval. In
a)-e) the dotted black line is the probability for label a, and in f) the dotted line gives
the generating Gaussians for three different labels.



figure we see how emp-ent prefers short intervals, and how conc resists this
behavior.

In test b) the generating distribution changes at the middle, first giving
probability 0.47 and then 0.53 to the label a. The interval length is 1 000 items.
Although b) has a long interval length, the fact that the distribution changes
only slightly, causes emp-ent to choose short intervals.

In test c) the distribution also changes at the middle point, but in contrast to
test b) the majority label does not. The probability of the label a is first 0.2 and
0.3 after the middle point. Note how conc fails in this case, although it otherwise
performs well. Interestingly, compress is the only approach to perform well.

In tests d) and e) the generating distribution changes as a linear function of
the interval position. In d) the change for the label a is from 0 to 1. In e) the
change is from 0.3 to 0.7. The correct split position is in the middle. We see that
the more difficult decision in e) causes emp-ent to choose also short intervals.

Finally, test f) demonstrates intervals generated from three overlapping Gaus-
sians. Each label — a, b, and c— is generated from a Gaussian distribution with
variance one on the unit line. The centers are at 1.5, 3, and 4.5. The correct split
position is at 3.

Of course, these results do not guarantee similar performance in a setting
that differs significantly from those introduced here. However, we chose these
tests to demonstrate the performance in as different circumstances as we could
find. They imply that failures with emp-ent tend to happen, if the decision
is not easy to begin with. Otherwise, the failure rate does not depend on the
parameters of the test, such as length of the interval.

6 Implications to Classification: Experimental Evaluation

In this section we study how the suggested solutions affect our motivating ap-
plication, the nb classifier. We evaluate the splitting methods on 16 commonly
used problems from the UCI machine learning repository. We carry out 100 iter-
ations for each problem. During each iteration two-thirds of the data is assigned
to a training set and the rest is assigned to a test set. The performances as a
probability of predicting the correct label for the test sets are given in Table 4.
We also give the number of generated bins for each problem, counted over all
features. The bay-ent method is omitted, because its performance was close to
that of compress.

We note that the performance difference between emp-ent and compress
is negligible. Either the problematic cases that we have discussed do not occur
in practice, or due to the nature of either mdl stopping rule or the recursive
heuristic the mistakes are not important. In the latter case it could be that mdl
is too conservative in its decisions to take advantage in a better splitting, because
it maximizes the split probability when using emp-ent, as we have noted in [23].
Another potential reason is the use of the recursive heuristic which could hide
the problematic decisions. By this we mean that, even if we erroneously split



Table 4. Performance of splitting methods on Näıve Bayes. The average classification
accuracy is over 100 repetitions of randomized training set selection for 16 UCI domains.
The average number of bins in each domain is also given.

Accuracy Number of bins

EMP-ENT COMP CONC EMP-ENT COMP CONC

Iris 94.0 94.0 93.9 6.6 6.6 6.7

Glass 67.8 66.4 67.4 14.4 14.6 13.6

Bupa 62.8 63.5 59.4 6.2 6.3 6.1

Pima 74.0 74.4 74.0 10.3 10.2 11.2

Ecoli 85.1 85.3 85.6 8.2 7.8 7.8

Segmentation 83.2 82.7 82.4 44.4 44.6 44.1

Wine 98.3 98.0 97.3 19.8 19.8 18.9

Australian 85.6 85.5 85.8 14.4 14.4 14.8

German 73.7 73.2 73.8 24.1 24.0 24.9

Iono 88.9 88.5 89.3 88.1 87.5 81.0

Sonar 75.9 76.5 75.9 60.9 59.8 60.5

Wisconsin 97.5 97.5 97.7 17.5 17.6 18.2

Letter 73.7 73.6 73.4 128.8 129.4 129.3

Abalone 58.5 58.5 58.5 41.3 40.9 37.6

Vehicle 59.4 59.1 59.2 44.1 42.6 42.6

Page 93.3 93.2 93.5 46.9 46.1 40.8

Average 79.5 79.4 79.2 36.0 35.8 34.9

few labels away from an interval, the recursive splitting guarantees that we will
also split at the correct place.

Also, conc performed well, expect in the Bupa domain. Hence, the behavior
depicted in test c) of Figure 6 appears not to happen frequently.

We also investigated further what kind of intervals the splitting rules form.
The results are given in Figure 7. We see that the emp-ent indeed chooses
more short intervals than compress. On average, the number of intervals that
compress selects is slightly lower than for emp-ent. This is not surprising,
because emp-ent maximizes the likelihood of splitting with mdl stopping rule.

7 Conclusions

We gave observations on the behavior of the empirical entropy and noted that
for small sample sizes its bias is significant. Then we suggested new methods
for choosing the best split point and we empirically evaluated them. A method
based on compression fared well in these tests, although the implications were
negligible when the splitting methods were applied in the nb classifier. One
reason for this behavior could be that the stopping rule and the split point
selection method interact in the recursive heuristic. Hence, one possible future
direction is to investigate these interactions further.
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Fig. 7. Distribution of intervals with length less than 100 counted over all domains.
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