
Poketree: A Dynamically Competitive Data

Structure with Good Worst-Case Performance

Jussi Kujala and Tapio Elomaa

Institute of Software Systems
Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland
jussi.kujala@tut.fi, elomaa@cs.tut.fi

Abstract. We introduce a new O(lg lg n)-competitive binary search tree
data structure called poketree that has the advantage of attaining, under
worst-case analysis, O(lg n) cost per operation, including updates. Pre-
vious O(lg lg n)-competitive binary search tree data structures have not
achieved O(lg n) worst-case cost per operation. A standard data struc-
ture such as red-black tree or deterministic skip list can be augmented
with the dynamic links of a poketree to make it O(lg lg n)-competitive.
Our approach also uses less memory per node than previous competitive
data structures supporting updates.

1 Introduction

Among the most widely used data structures are different binary search trees
(BSTs). They support a variety of operations, usually at least searching for a
key as well as updating the set of stored items through insertions and dele-
tions. A successful search for a key stored into the BST is called an access. BST
data structures are mostly studied by analyzing the cost of serving an arbitrary
sequence of operation requests. Moreover, the realistic online BST algorithms,
which cannot see future requests, are often contrasted in competitive analysis
against offline BST algorithms that have the unrealistic advantage of knowing
future requests. Examples of BST algorithms include 2-3 trees, red-black trees
[1], B-trees [2], splay trees [3], and an alternative to using the tree structure,
skip lists [4,5].

In an attempt to make some progress in resolving the dynamic optimality

conjecture of Sleator and Tarjan [3], Demaine et al. [6] recently introduced Tango,
an online BST data structure effectively designed to reverse engineer Wilber’s [7]
first lower bound on the cost of optimal offline BST. Broadly taken the dynamic
optimality conjecture proposes that some (self-adjusting) BST data structure
working online, possibly splay tree, would be competitive up to a constant factor
with the best offline algorithm for any access sequence. Tango does not quite
attain constant competitiveness, but Demaine et al. showed an asymptotically
small competitive ratio of O(lg lg n) for Tango in a static universe of n keys.



Table 1. Known asymptotic upper bounds on the performance of competitive BST
algorithms. Memory is given in bits, where letter w is a shorthand for ”words”.

Tango MST Poketree Poketree(RB) Poketree(skip)

Search, worst-case O(lg lg n lg n) O(lg2
n) O(lg n) O(lg n) O(lg n)

Search, amortized O(lg lg n lg n) O(lg n) O(lg n) O(lg n) O(lg n)
insert/delete N/A O(lg2

n) N/A O(lg n) O(lg2
n)

memory per node 4w+2lg w+2 7w+lg w+1 6w+1 6w+2 4w+lg lg w

Prior to this result the best known competitive factor for an online BST data
structure was the trivial O(lg n) achieved by any balanced BST.1

Tango only stores a static set of keys, it does not support update operations
on stored data items. It has O(lg n lg lg n) worst-case access cost and cannot
guarantee better performance under amortized analysis for all access sequences.2

Wang, Derryberry, and Sleator [8] put forward a somewhat more practical BST
data structure, in the sense that it supports update operations as well, multi-

splay trees (MST) — a hybrid of Tango and splay trees— which also attains the
double logarithmic competitive ratio O(lg lg n). The worst-case complexity of a
MST is O(lg2 n), but it achieves O(lg n) amortized access cost. The costs for up-
date operations in a MST are similar. MSTs inherit some interesting properties
from splay trees; it is, e.g., shown that the sequential access lemma [9] holds for
MSTs.

In this paper we introduce poketree, which is a generic scheme for attaining
O(lg lg n)-competitive BST data structures with different static data structures
underlying it. As static data structures we use red-black trees [1] and determinis-
tic skip lists [5]. By using different static data structures we can balance between
the amount of augmented information in the nodes and efficiency of operations.
In contrast to Tango and MST, poketree has O(lg n) cost per operation under
worst-case analysis. The O(lg2 n) update cost with skip lists can be, in prac-
tice, lowered to O(lg n) cost per update [5]. See Table 1 for a summary of the
characteristic costs of Tango, MST, and poketree.

The contribution of this paper is a dynamically O(lg lg n)-optimal data struc-
ture that has the best combination of space and cost requirements with updates
supported. Poketree is not a strict binary search tree, because nodes in it can
have up to one additional pointer, but it supports the same set of operations.
As a side result we give a lower bound to the cost of BST algorithms, proven in
a similar manner to the bound of Demaine et al. [6], which has a small increase
in the additive term from the previous best of −n − 2r [8] to −n/2− r/2.

The remainder of this paper is organized as follows. In Section 2 we explain
the lower bound on the cost of offline BST algorithms that we use. It is slightly
tighter than the one in [6] and formulated to support other than strict 2-trees.
In Section 3 we demonstrate the idea behind poketree in case where the static

1 By lg n, for a positive integer n, we denote ⌈log
2
n⌉ and define lg 0 = lg 1 = 1.

2 Subsequent manuscripts available at the Internet mention that Tango can be modi-
fied to support O(lg n) worst-case access.



structure is a perfectly balanced BST with no update operations supported. In
Sections 4 and 5 we generalize to other static structures, now supporting update
operations. The concluding remarks of this paper are presented in Section 6.

2 Cost Model and the Interleave Bound

Because we want to compare the costs of online and offline BST algorithms, we
need a formal model of cost. Earlier work [3,7,6,8] has mostly used a model which
charges one unit of cost for each node accessed and for each rotation. However,
a simpler cost model was used by Demaine et al. [6] in proving a lower bound.
They only counted the number of nodes touched in serving an access. A node is
touched during an access if the data structure reads or writes information on the
node. These two models, and several others, differ at most by a constant factor
because a BST can be transformed to any other one containing the same set of
keys using a number of rotations that is twice the number of nodes in the tree
[10]. We adopt the latter model and take care that no computation is too costly
when compared to the number of nodes accessed.

Wilber [7] gave two lower bounds on the cost of dynamic BST algorithms;
the first of these is also known as the interleave bound. It has been used to prove
the O(lg lg n)-competitiveness of the recent online BST algorithms [6,8]. We will
also use it to show the O(lg lg n)-competitiveness of poketree. Let us describe the
interleave bound briefly. Let P be a static BST on the items that are accessed.
The BST P is called a reference tree. It may be a proper BST, 2-3 tree, or any
2-. . . -* tree. Using BSTs results in the tightest bound and, hence, they have
been used previously. However, we do not necessarily need as tight results as
possible, therefore, we give a slightly different version of the interleave bound.

We are given an access sequence σ = σ1, . . . , σm that is served using P . For
each item i in P define the preferred child of i as the child into whose subtree
the most recent access to the subtree of i was directed. Let IB(σ, P, i) be the
number of switches of preferred child of i in serving σ. The interleave bound
IB(σ, P ) is the sum of these over all the nodes of P :

∑

i∈P IB(σ, P, i). Let r be
the number of rotations in P while serving σ.

Theorem 1. Any dynamic binary search tree algorithm serving an access se-

quence σ has a cost of at least IB(σ, P )/2 + m − n/2 − r/2.

This bound is slightly tighter than previously known best lower bound IB(σ, P )/2
+m−n−2r by Wang, Derryberry, and Sleator [8]. The proof for the new bound
is given is given in Appendix B.

3 Poketree— A Dynamic Data Structure

Let Pt be the state of the reference tree P at time t. In addition to P , Pt con-
tains information on preferred children. Preferred paths follow preferred child
pointers in Pt. Both Tango and MST keep each preferred path of a reference



tree Pt on a separate tree; these trees make up a tree of trees. When the
interleave bound on P increases by k, then exactly k subtrees are touched.
Moreover, the algorithms provide an efficient way to update the structure to
correspond to the new reference tree Pt+1. Thus the access cost is at most
k lg(# of items on a path) ≤ k lg lg n when the data structure for subtrees is
chosen suitably.

We, rather, augment a standard balanced search structure with dynamic

links to support a kind of binary search on preferred paths. The balanced search
structure corresponds to the structure of the reference tree, which is used to
provide a lower bound on the cost. In our approach we take advantage of the
static links in searching for an item, whereas Tango and MST maintain the
reference tree information but do not really use it in searching. This enables us
to implement update operations using less space than MST.

We first describe how our method, called poketree, works on a perfectly
balanced tree. In the following sections we relax these assumptions and generalize
it to handle trees with less balance and to support update operations insert and
delete. Interpreted most strictly, poketree is not really a BST, because items
are not necessarily searched through a search tree, but using dynamic links.
However, this is rather a philosophical than a practical point, since the same
operations are supported in any case. The nodes of a poketree are augmented
with a dynamic link to make it dynamically competitive. The idea is to follow a
dynamic link whenever possible, and descend via a static link otherwise. Dynamic
links allow to efficiently find a desired location on a preferred path and they can
be efficiently updated to match the new reference tree Pt+1. We consider later
the requirement of inserting (removing) an item to the head of a preferred path
brought along by supporting insertion (deletion).

Let us fix a preferred path a = a1, . . . , al and note that al is always a leaf
in the static tree but a1 is not necessarily its root. If the dynamic links would
implement a binary search on the path a, then it would be possible to travel
from a1 to any ai in lg l ≤ lg lg n time. However, this idea does not work as
such, because updating dynamic links would be difficult and, even worse, since
the preferred path a is a path in a BST, it is not necessarily ordered, making it
impossible to carry out binary search on it.

For now we just augment each node to contain the smallest and the largest
item in the subtree rooted at the node (we later lift this requirement in Section 5).
We still have to set the dynamic links to implement a kind of binary search
including quick updates to the structure of the preferred paths in P . There are
two types of nodes, of type SDD and S. Define a static successor of a node N
to be the child in which the last search through N went. The dynamic link of a
node of type SDD leads to the same node as following two dynamic links starting
from its static successor. A node of type S, on the other hand, has its dynamic
link pointing to its static successor. Note that the dynamic links always point
lower in the tree, except in the special case of a leaf node.

The key trick is to choose the type of a node. The rule for this is as follows. A
node is of type SDD if the length of the dynamic link of its successor equals the



Fig. 1. An example of dynamic links. Static links are omitted, they point always to the
next item in the list. The round nodes are of type SDD and the square ones of type S.
The node with label 0 is a leaf.

length of the dynamic link of the dynamic link of the successor. Otherwise, the
node is of type S or a leaf node, which does not have a dynamic link. Observe
that to satisfy this requirement, links have to be set up from a leaf to the root.

An example of the resulting structure is given in Figure 1. Intuitively, dy-
namic links let us recursively split a path into two parts and have one dynamic
link arc over the first part and another one over the second part. The two Ds in
SDD stand for these arcs. Now note that if these links are set from the last item
to the first one, the distance that a dynamic link traverses is a function of its
distance to the end of the preferred path. Every possible path starting from a
particular node is of the same length because we have assumed that a poketree
is perfectly balanced. These facts together make it possible to update dynamic
links quickly when a preferred path in P changes direction. We describe next
the search operation and how to update the structure corresponding to Pt to
correspond to Pt+1.

The search attempts at each node to use the dynamic link to potentially
skip a number of static links. However, if following the dynamic link leads to
a node that does not contain the searched item in the range of items in its
subtree, we say that the dynamic link fails. If the dynamic link fails, then the
search backtracks to the node where the dynamic link was used and resorts to
using the appropriate static pointer. Using a dynamic link has a cost, because
an additional node has to be visited. It is possible to augment the parent of
a dynamic link with the range information of the dynamic link, but this costs
more space.

After the searched item has been found, we may have to update those nodes
in which a static link was used, because the preferred path may have changed.
Assume that we know whether a node is of type S or SDD, for example by
reading a bit that contains this information. After performing a search, in going
from the bottom to the top, the dynamic link in each node can be (re)set because
the the links in the subtree rooted at the preferred child have already been set
up. Let us start by stating the most obvious result.

Theorem 2. The worst-case cost for any search in a poketree is O(lg n).

Proof. Clearly, in the worst case all dynamic links fail because otherwise some
static link can be skipped with no cost. Thus, the worst-case cost is bounded to
be a constant factor away from the number of static links traversed. This bound
is of the order O(lg n) because the static structure is balanced and a constant
amount of work is done during each static link.



The following theorem states that dynamic links are fast enough.

Theorem 3. No more than O(lg lg n) time is spent on a preferred path on the

way to the accessed element.

The proof is given in Appendix A.
Each change in the preferred paths, and subsequently in dynamic links, cor-

responds to one switch in dynamic pointers. Poketree does at most a constant
amount of work for each switch in the dynamic links. Thus, by Theorems 3 and 1,
it follows:

Theorem 4. Poketree is O(lg lg n)-competitive among the class of all binary

search tree algorithms.

4 Insertions and Deletions: Poketree(RB)

In previous section we assumed that each root-to-leaf path has the same length.
In reality, a data structure must support insertions and deletions and, thus, we
cannot rely on idealized perfect balance to make things easy for us. Nevertheless,
it is possible to retain the use of dynamic links while supporting these important
operations. Some data structures are in a sense always perfectly balanced. For
example, in a red-black tree [1,11] every root-to-leaf path has the same number of
black nodes and in balanced 2-3 tree implementations the nodes (each containing
one or two items) are always in perfect balance.

In order to argue competitiveness, we need a cost model that can handle
updates. During updates the structure of the reference tree changes to correspond
to the static structure of the poketree. An insertion causes a search and insertion
to the location in the reference tree where the item should be, and a deletion
causes a search to both the deleted item and its successor in the key space, after
which the item is deleted as usual. The actual cost charged from an offline BST
algorithm is the number of preferred child pointers that switch, more precisely
a constant factor of that number. Wang et al. [8] implement updates and use a
similar model, which however is not as tight, because in a deletion they search
for both predecessor and successor as well as rotate the item in the offline BST
to a leaf.

We now describe how to support insertion and deletion by using a red-black
tree as the static structure. A red-black tree can be viewed as a 2-3-4 tree, where a
node of the 2-3-4 tree corresponds to a black node and its red children. We choose
the reference tree P to be the 2-3-4 tree of the red-black tree. In the red-black tree
the dynamic links point only from black nodes to black nodes. First, note that in
the 2-3-4 tree view of a red-black tree, the tree increases height only from the top,
and when splitting nodes the distance from nodes to leaves stays the same (in
the 2-3-4 tree). Second, during updates nodes in the red-black tree may switch
nodes in the 2-3-4 tree, because there might be repaints. Third, it is known that
during an update to a red-black tree the amortized number of repaints and the
worst-case number of rotations are both constants [12]. The resulting algorithm,



poketree(RB), has the same asymptotic competitiveness properties as a perfectly
balanced poketree, but now with updates supported. Note that the competitive
ratio is not exactly the same, because red nodes are without dynamic links and,
thus, there is a constant factor overhead in the competitive ratio. On the other
hand, less unnecessary work is done if the access sequence does not conform to
a structure that allows a BST algorithm to serve it in less than Θ(m lg n) cost.

To support update operations, we must be able to decide the type of a new
root —S or SDD —assuming that the types in the subtree rooted at the root
are set up correctly. If we are given such a node, then it is possible to count the
number of consecutive SDD nodes its static successor and dynamic link of the
static successor have. If these are equal, then the node is of type SDD, otherwise
it is of type S. This holds, because the rule for choosing the type of a node
depends on the fact that the length of the dynamic link in its successor and in
the dynamic link of the successor are the same, which is true if the same number
of SDD nodes have been chosen in a row in those two locations. Leaf nodes (tails
in a preferred path) make an exception, because they do not have a dynamic
link.

In poketree each node carries information about the interval of keys in its
subtree. In poketree(RB) these bounds are maintained in the form of strict lower
and upper bounds, i.e., a lower bound cannot be the smallest key in the tree, but
could be the predecessor to the smallest key. The reason is that these bounds
can be efficiently handled during updates.

To insert a key to a poketree(RB) we need to search for its predecessor and
successor (note that there is no need to actually know their values), actually
insert it and set the lower and upper bound in the corresponding node, update
the dynamic links, and finally fix any violations to red-black invariants while
taking care in each repaint of the nodes that the poketree invariant holds in the
tree at the level of the current operation. In general a repaint from black to red
deletes the dynamic link and a repaint from red to black sets the dynamic link
according to the type of the node which can either be obtained from some other
node or as described above in the case of a new root node. For completeness we
describe what to do during the fixup of the red-black tree as it might not be
obvious. These cases correspond to ones in [11, pp. 284–286]. Unfortunately, the
page limit does not allow for a more complete presentation.

Case 1: Swap memory locations of the A and C nodes and set static pointers
and dynamic pointer in A. This ensures that dynamic links upper in the
tree point to a correct node. Then set the type of D to be the type of C
and remove dynamic link in C and set the dynamic link in D. This case
represents a split of a node in the 2-3-4 tree view.

Case 2: Do nothing.

Case 3: Swap memory locations of B and C and set the static pointers. Thus
B obtains the dynamic link that was in C and dynamic links upper in the
tree point to a correct node.



Finally, if the root was repainted from red to black, obtain a new type us-
ing the procedure described above and set the type info and dynamic link
accordingly.

Note that we may need to update information about lower and upper bounds
on the nodes. The total time of insertion is O(lg n), because the type-procedure
needs to be called at most once at the root.

A deletion can be implemented using the same ideas as the insertion, but
the details are slightly more complicated. In a deletion the following sequence
of operations is executed: find the item to be deleted; find its successor by using
dynamic links, bound information, and comparing the lower bound to the deleted
item; set dynamic links; delete the item as usual; finally, call the RB-fixup to fix
possible invariant violations. In fixup there are several cases to consider, but the
general idea is that in the tree there might be an extra black with an associated
memory address (because a node further up in the tree may point to it through
a dynamic link), which floats upper in the tree, and the address might change,
until it is assigned in another location. Things to consider during RB-fixup:

Case 1: Swap memory locations of B and D items and set the static pointers.
Case 2: (There is no dynamic link pointing to D). Delete dynamic information

on D. Swap memory location and type of A with the extra black. This
represents a merge of two nodes in the 2-3-4 tree.

Case 3: Swap memory locations of C and D items and set the static pointers.
Case 4: Set static pointers, delete dynamic information on D, set type of E

to type of D and set the dynamic pointer, swap memory location and type
of A with extra black, set memory location and type of B to those of the
extra black, set static pointers and update the dynamic pointer on B and A
accordingly.

If there is an extra black in the root, just delete it and set the type to be the
type of a black child node before the update.

Note that the lower bound must be set on the nodes along the dynamic links on
the preferred path from the successor node to the location where the successor
previously was. This ensures that the dynamic links pointing from above of the
successor to its subtree do not make a mistake if the successor is later accessed.

All operations done during updates have a cost of O(lg lg n) per switch of
preferred child pointer in the reference tree. We conclude that poketree(RB) is
O(lg lg n)-competitive, even when updates to the tree are taken into account.

5 Reducing Memory Consumption: Poketree(skip)

So far we have augmented each node in a poketree with a lower bound and an
upper bound on key values in its subtree. This constitutes a problem, since each
node consumes two words of precious memory. It is no surprise that it is possible
to fare better, as a part of the information about lower and upper bounds seems
to be redundant between nodes. We suggest a poketree based on a variant of a
deterministic skip list by Munro, Papadakis, and Sedgewick [5].



In a skip list items form a list. A node of this list is an array that contains a
key, a pointer to the next item in the list, and a varying number of links that point
progressively further in the list. More precisely, each additional link on an item
points about twice as far as the previous link. The number of additional links
on an item is referred to as its height. Approximately 1/2hth part of the nodes
have h additional links and links of same height are nearly uniformly distributed
in the list. Thus, the search cost is logarithmic and the total space consumed is
upper bound by n + n + n

∑
∞

i=1 1/2i = 3n. What makes this structure desirable
for us is that if we search for an item and can see only a node of the list, then
it is easy to check whether the searched item is between the current node and
a node pointed by a link of some particular height. Hence, we can lower the
memory overhead of storing bounds for keys in subtrees, but have to fetch one
additional node to see its key.

A deterministic skip list corresponds to a perfectly balanced 2-3 tree [5].
Using this correspondence, it is possible to relate the performance of a skip list
augmented with dynamic links to BST algorithms. More specifically, if there is
a dynamic link for each additional static link, then it is possible to associate
each dynamic link to a node in the 2-3 tree view. Items between an item and
a particular static link on it correspond to a subtree rooted to a node in the
2-3 tree. The dynamic link associated with this static link corresponds to the
dynamic link of that node in the 2-3 tree. We do not go into the details, because
of lack of space.

Insertion and deletion can be implemented similarly as in a poketree(RB).
Unfortunately, an insertion takes O(lg2 n)-time in a deterministic skip list, so
we have a trade-off here. However, Munro et al. [5] argue that in practice the
update operation can be implemented in O(lg n)-time if memory for nodes is
allocated in powers of two.

6 Conclusions

We have presented poketree algorithm, which is O(lg lg n)-competitive against
the best dynamic offline BST algorithm and that is founded on same ideas as
previous such algorithms, like Tango [6]. Our implementation supports update
operations, like MST [8] does, and has better worst case performance.

Acknowledgments

This work was supported by Academy of Finland project “INTENTS: Intelligent
Online Data Structures”. Moreover, the work of J. Kujala is financially supported
by Tampere Graduate School in Information Science and Engineering (TISE).

References

1. Bayer, R.: Symmetric binary B-trees: Data structure and maintenance algorithms.
Acta Informatica 1 (1972) 290–306



2. Bayer, R., McCreight, E.M.: Organization and maintenance of large ordered in-
dices. Acta Informatica 1 (1972) 173–189

3. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM
32(3) (1985) 652–686

4. Pugh, W.: Skip lists: A probabilistic alternative to balanced trees. Communications
of the ACM 33(6) (1990) 668–676

5. Munro, I., Papadakis, T., Sedgewick, R.: Deterministic skip lists. In: Proceedings
of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM (1992)
367–375

6. Demaine, E.D., Harmon, D., Iacono, J., Pǎtraşcu, M.: Dynamic optimality – al-
most. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of
Computer Science, IEEE Computer Society Press (2004) 484–490

7. Wilber, R.: Lower bounds for accessing binary search trees with rotations. SIAM
Journal on Computing 18(1) (1989) 56–67

8. Wang, C.C., Derryberry, J., Sleator, D.D.: O(log log n)-competitive dynamic bi-
nary search trees. In: Proceedings of the 17th Annual ACM-SIAM Symposium on
Discrete Algorithms, ACM Press (2006) 374–383

9. Tarjan, R.E.: Sequential access in splay trees takes linear time. Combinatorica
5(4) (1985) 367–378

10. Culik II, K., Wood, D.: A note on some tree similarity measures. Information
Processing Letters 15(1) (1982) 39–42

11. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
Second edn. McGraw-Hill (2001)

12. Tarjan, R.E.: Data Structures and Network Algorithms. SIAM (1983)

A Proof of Theorem 3

The definition of dynamic links gives the following recursive rule for the length
L(m) of the dynamic link of the mth item counted from the tail of a preferred
path.

L(m) =







0 m ≤ 1
1 + 2L(m − 1) if L(m − 1) = L(m − 1 − L(m − 1))
1 otherwise.

Let b1, . . . , bj be the items accessed on the preferred path when searching for
bj , or the place where the search deviates from the path, and the first item
on the path is b1. Associate to each bi a the length of its dynamic link ki.
We will prove that the sequence K = 〈k1, . . . , kj〉 is of the form where it first
increases and then decreases and, moreover, that no number appears more than
twice in a row. Together with the fact that numbers ki are of form L(N) =
{0, 1, 3, 7, 15, 31, 63, . . . , 2i − 1, . . .} and a maximal ki is at most a length of a
root-to-leaf path l this implies that j can be at most 4 lg l ≤ 4 lg lg n, if l ≤ lg n.

As a tool we use a more intuitive presentation of the sequence L(m): L(m) is
the mth item in a sequence 〈0, S〉, where S is a infinite sequence. Let S1:i be the
prefix of S containing the first i numbers. The sequence S has been generated
by repeatedly applying a rule to generate a longer prefix of S:

S1
1:2 = 〈1, 1〉

Sk
1:2(i+1) = 〈Sk−1

1:i , (i + 1), Sk−1
1:i , (i + 1)〉.



Here the superscript k counts how many times this rule has been used. Equiv-
alence of these two presentations can be verified by simple induction on k.
In induction step assume that numbers in Sk

1:i equal numbers given by the
function L, i.e. Sk

1:i = 〈L(2), . . . , L(i + 1)〉. By inductive assumption Sk =
〈Sk−1, L(i+1), Sk−1, L(i+1)〉 and by definition the first i numbers in Sk+1 equal
Sk and Sk+1

i+1 = 2L(i+1)+1 = L(i+2). Now, L(i+3) = 1 because L(i+2) must be
larger than numbers in 〈L(1), . . . , L(i+1)〉, and L(i+3) = 1 because L(i+1) > 1
and L(i+2) = 1. In fact, 〈L(2), . . . , L(i+2)〉 = 〈L(i+3), . . . , L(2i+3)〉, because
L(i+ 2) is larger than numbers in 〈L(2), . . . , L(i+ 1)〉 and thus it behaves like 0
in the definition of L until the number L(i + 2) itself is generated again, which
is not until L(2i + 3). Thus 〈L(i + 3), . . . , L(2i + 4)〉 = 〈Sk, 2i + 1〉 and we can
conclude that the correspondence between L and S holds.

Let us denote by kM the maximal element in the sequence K. The prefix
of K that is 〈k1, . . . , ki+1, ki+2, . . . , kM 〉 is a non-decreasing sequence with at
most two repetitions of the same value because of the following structure in a
subsequence of S:

〈kM , . . . , ki+1 or ki+2, 1, 1, . . .
︸ ︷︷ ︸

ki−1 items

, ki, . . .
︸︷︷︸

ki−1 items

, ki, 2ki + 1〉.

Now the subscript in the item marked by k′ = (ki+1 or ki+2) depends on which
ki corresponds to the actual item that is visited during ki in K (we use ki as both
an item in the sequence K and a numerical value). Due to the rule generating
S, k′ must be either 0, which is impossible in our case, 2ki +1, or a larger value.

On the other hand, 〈kM , . . . , ki, . . . , kj〉 is a non-increasing sequence with at
most two repetitions of same value, because we can again write a subsequence
S as:

〈. . . , 1, 1, . . .
︸ ︷︷ ︸

kj is here

, ki, 1, 1, . . .
︸ ︷︷ ︸

or here

, ki, 2ki + 1, . . . , kM , . . .〉.

Here the parts indicated by underbraces are of length ki − 1.

B Proof of Theorem 1

A BST algorithm serving σ = σ1, . . . , σm defines a sequence of trees T0, . . . , Tm

and touches items during each access, let these be connected subtrees S1, . . . , Sm.
In the spirit of Demaine et al. [6], we will play with marbles. Our argument is
similar, but not quite the same as theirs. More precisely, for each change of a
preferred child, we will place a marble on an item. They are placed so that at
any time there is at most one marble on an item. Furthermore, no more than
two marbles per item in Sj − σj are discarded during σj . Two can be discarded
because after the first discard a new marble might be placed and then discarded.
Thus, half of the number of the marbles discarded is a lower bound on the cost
of the BST algorithm minus m. The number of marbles discarded can be at most
that of marbles placed Mplaced and is at least Mplaced − n, because there is



at most one marble on an item at any given time. So the total cost of any BST
algorithm is at least Mplaced/2−n/2 + m. Note that in our argument the trees

Ti are BSTs, but P can have nodes with several items. As such, this is not an
improvement to the results of Demaine et al., because if for example a 2-3 tree
P is given as a BST it gives a tighter bound, but we are able to get a smaller
additive term of −n/2 to the bound.

Let us now describe a method of placing marbles. On an access σj we first
discard marbles on Sj − σj . Then for each switch in preferred children a marble
is placed. It is placed to the least common ancestor (LCA) in Tj of items in the
subtree of formerly preferred child. Note that Tj is the tree after an access σj .
After placing marbles, again discard marbles on Sj − σj .

Why are two marbles never on the same item? First, note that distinct sub-
trees rooted at items in P form continuous intervals in key values. Thus their
LCAs must be distinct, because the LCA of a continuous interval belongs to
that interval. This implies that marbles placed during the same time step do not
mix; the previously preferred subtrees are distinct, so their LCAs are distinct
too. Second, marbles placed at different time steps do not mix. To see why, as-
sume that there is an item a that already has a marble when we try to place
another on it. Preferred child pointer of a node v changes; it previously pointed
to subtree Pa of P containing a. Let s1 be the access during which the first mar-
ble was placed and s2 the access trying to place the second marble. There are
two separate cases depending on where the first marble has been placed: above of
v in P or on v or below it. In the first case we must either have touched a during
the access to s2, because a must have been an ancestor of s2, or a must have
been touched while it was rotated from being an ancestor to s2. In the second
case the first marble has been placed on v or in Pa and a has been touched when
an item in Pa was last accessed, which must be after or during s1 because the
preferred child pointer of v points to Pa and s1 is in Pa. In any case, a cannot
hold the first marble anymore and the second marble can be safely inserted to
a.

Assume now that we may do rotations on BST P . What happens if we rotate
an item a above of b? If before the rotation tree P was safe in the sense that
an access to any item would not place two marbles on the same item, then by
removing a marble from a certain item on P , we can guarantee that after the
rotation the new tree P ′ is safe as well. To find this item, note that preferred
child pointers of a and b point to two subtrees and it is safe to switch the
pointers to these subtrees and place a marble to the LCA of those subtrees.
After the rotation, if the preferred child pointers are set to their natural places,
at most one of these two pointers points to a different tree (this can be verified
by going through all four— eight, counting the mirror images— possible cases).
If we remove the marble on the LCA of the items in this tree, then P ′ is safe.
This implies a lower bound of (IB(σ, P ) − n − r)/2 + m, where r is the number
of rotations. This is the tightest known bound formulated using a reference tree
P .


