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Abstract. This paper studies an efficient approach to infer a sparse
topic model for a text corpus using Latent Dirichlet Allocation (LDA).
To this end, we use the Concave-Convex Procedure (CCCP) to optimize
over the LDA objective. The resulting update equations are intuitive and
simple. The improvement over previous methods is that either the previ-
ous methods are computationally more expensive, they do not parallelize
well in theory or are not applicable for parallel computation models such
as MapReduce, or they have approximation issues with small parameter
values of the Dirichlet prior in LDA. The algorithm suggested in this
paper, LDA-CCCP, parallelizes embarrassingly well, because the most
time-consuming part of the algorithm is identical to the EM algorithm
for Probabilistic Latent Semantic Allocation. Our preliminary experi-
ments show that LDA-CCCP performs computationally well and it has
accuracy similar to competing methods.

1 Introduction

Algorithms for topic models seek structure in documents that corresponds to the
intuitive notion of topics. The inferred topics are useful for several purposes, e.g.,
in finding similarities between documents or documents that have a particular
topic.

The topics intuitively have certain properties. For example, a document typ-
ically belongs to a small set of topics, and a topic has a constrained vocabulary
(at least if common words are modeled separately [15]). Dirichlet prior is one
approach to incorporate sparseness. The Dirichlet prior is a probability distri-
bution over monomial distributions. In it the density p of a particular word is
proportional to pα−1 with a parameter α > 0. Hence, low values of the parame-
ter α indicate smaller probabilities for an average word. For example, values of
the parameter α very close to zero cause a single word to have probability one.

The data sets from which we want to find topics might be large, because even
small subsets of text written by humanity are large. Furthermore, topic models
? Previously known as Helsinki University of Technology (HUT).
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are not limited to text, and they have also been applied to other sources of data,
for example behavior of humans [6], biological data, and software traces [1]. All
of these sources potentially produce large quantities of data. Hence, efficient and
distributed algorithms for topic models are required.

Several methods have been devised for topic models, for example Proba-
bilistic Latent Semantic Allocation (PLSA) [9] and Latent Dirichlet Allocation
(LDA) [4]. LDA takes advantage of the properties of the Dirichlet prior: in
LDA the term distributions of topics and topic distributions of documents have
Dirichlet priors.

This paper studies an approach to efficiently compute an approximate max-
imum of a posterior of a distribution with Dirichlet prior. The focus is on LDA,
but the method is more general than that. More precisely, we use Concave-
Convex Procedure (CCCP) to optimize over the LDA objective. CCCP is an
iterative heuristic that finds a minimum of a function: in each iteration it finds
the location of the minimum of the convex part of the function plus linearized
concave part approximated at the current location. In LDA the concave part
is the Dirichlet prior. Intuitively, CCCP on LDA first solves a simpler prob-
lem (PLSA), where the priors over topics in documents and words in topics are
uniform, and proceeds to refine that solution to a more sparse one.

With CCCP we derive an EM -like algorithm for LDA, which we call LDA-
CCCP. We can not directly use EM algorithm for LDA, because it is difficult to
take into account constrains that probabilities are positive.

In short, we believe that the main contributions of LDA-CCCP are in com-
putational properties. More precisely, it has the following advantages compared
to the previous work:

– The most time consuming part of LDA-CCCP is identical to computations
in the EM algorithm for the PLSA. Hence, the updates are embarrassingly
parallel and we can implement them on parallel computation platforms such
as MapReduce that seek to minimize the communication between parallel
work threads. 1

– Competing methods have issues under certain conditions. We will discuss this
in more detail in Section 6, but we give a short summary here. First, the
exact variational EM algorithm needs to compute digamma functions which
is expensive. Also, more efficient approximations of the variational EM do not
work well if the parameter α of the Dirichlet prior is small. Another approach,
collapsed Gibbs sampler, is a random sampler which might explain why it
converges slowly to the optimum after initial iterations [2]. Also, in theory
it does not parallelize well (although in practise it does to some extent [10])
and is not applicable on computing platforms that minimize communication
costs such as MapReduce [7]. Collapsed variational Bayes algorithm shares
these parallelization issues.

The structure of the remaining paper is as follows. Section 2 gives the nec-
essary background on the Dirichlet prior, topic models, and CCCP. The the-
1 An implementation is available at http://www.cis.hut.fi/jukujala/lda-cccp/

lda-cccp.tar.bz2. Be warned that this software is still in early alpha.
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ory behind LDA-CCCP is introduced in Section 3 and the following Section 4
then presents the concrete algorithm and gives some practical advice. Section 5
presents the empirical findings. Section 6 discusses related work. Finally, Sec-
tion 7 concludes.

2 Background

This section introduces the necessary background: Dirichlet prior, topic mod-
elling methods PLSA and LDA, and the optimization method CCCP.

2.1 Dirichlet prior

The Dirichlet prior is a distribution over multinomial distributions. The density
of the Dirichlet prior at a distribution x = (x1, . . . , xk) with K possible outcomes
is

Dir(x;α) =
∏K
i=1 x

(α−1)
i

Z(α,K)
,

in which Z(α,K) is the normalizing constant
∫ ∏K

i=1 x
α−1
i dx and α is the pa-

rameter of the distribution. Observe that if α is one then the Dirichlet prior is
the uniform distribution.

2.2 Topic model methods: PLSA and LDA

Hofmann [9] introduced Probabilistic Latent Semantic Allocation (PLSA) which
finds representative topics from a corpus of text documents, i.e., topics are distri-
butions over words, into which the documents decompose. More precisely, PLSA
assigns to each document d a probability distribution p(w|d) over terms:

p(w|d) =
K∑
z=1

p(w|z) p(z|d),

where the term distribution p(w|z) gives the probability of the term w appearing
in the topic z and the topic distribution p(z|d) gives the probability of document
d producing a word from the topic z. The number of topics is K.

Latent Dirichlet Analysis (LDA) is an extension of PLSA where the topic
and term distributions have Dirichlet priors [4]. PLSA implicitly assumes that
they have uniform prior. In LDA the term distributions p(w|z) have Dirichlet
prior with parameter α and the topic distributions p(z|d) have Dirichlet prior
with parameter β. In empirical experiments LDA appears to outperform PLSA
in cases where the number of parameters is large compared to the size of the
data [5]. The log-density of the LDA model is:∑

(w,d)∈D

log p(w|d) +
∑
z

∑
w

(α− 1) log p(w|z)−
∑
d

∑
z

(β − 1) log p(z|d), (1)



4 Jussi Kujala

where D is the set of word-document (w, d)-pairs in the corpus and the sums
are over topics (z), terms (w), and documents (d). Note that the left part of the
log-density (1) depending on the data is concave as a function of probabilities
and the right part depending on the model is convex.

More detailed introduction to the literature of topic models is found, e.g.,
in [3].

2.3 CCCP

Constrained Concave-Convex Procedure (CCCP) is a general optimization method
for functions [16]. In it the minimized function f(x) is decomposed into a convex
part v and a concave part c:

f(x) = v(x) + c(x),

and optimized with an iterative procedure in which c(x) is linearized at previous
solution xt:

xt+1 = arg min
x
v(x) + (x− xt) c′(xt). (2)

The first solution x0 is initialized to the best guess. Note that we can use any
method to perform the above minimization. Sriperumbudur and Lanckriet [13]
state that CCCP is widely used in machine learning and provide convergence
results for it. They note that each iteration of CCCP decreases the objective
function value, but it is unknown whether CCCP always converges to a local
minima.

3 Theory of LDA with EM and CCCP

This section first gives the EM algorithm update equations for PLSA, then notes
why applying EM is not straightforward for LDA, and finally proceeds to show
the update equations of LDA-CCCP. Theoretical derivations are postponed to
Appendix A.

Let qwdz denote the current estimate of the conditional probability distri-
bution p(z|w, d) of the topic of the word w in the document d. Let qwz denote
the sum over all documents

∑
d qwdz and similarly qdz sum over words in the

document
∑
w qwdz. The EM algorithm updates for PLSA are:

p(w|z) =
qwz
N(z)

and

p(z|d) =
qzd
N(d)

,

where N(z) and N(d) are the Lagrange multipliers that normalize the sums
of probability distributions to one. Note we can compute the values qwdz in
parallel, and also to some extent the distributions p(w|z) and p(z|d). More precise
details on parallelization and an example of an implementation on MapReduce
framework is found in [6].
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Similarly derived EM algorithm update equations for LDA are:

p(w|z) =
qwz + β − 1

N(z)
and

p(z|d) =
qzd + α− 1

N(d)
,

which are problematic because α − 1 or β − 1 in the numerator could result in
a negative probability.

In CCCP we proceed in rounds. During a round we will need the values of the
parameters during the previous round. We will denote these by the superscript
0, for example p0(w|z) and p0(z|d). Given these, the update equations for LDA-
CCCP are:

p(w|z) =
qwz

(1− β)/p0(w|z) +N(z)
and

p(z|d) =
qzd

(1− α)/p0(z|d) +N(d)
,

which are derived with the EM algorithm and the Lagrange’s method. We can
solve the Lagrange multipliers N(z) and N(d) with, e.g., a line search. Note
that these updates are intuitive; the denominator is larger if the probability was
small in the previous iteration.

In practise, we first set the initial parameters p0(w|z) and p0(z|d) to uniform
distributions. This means that the first iteration of CCCP corresponds to PLSA.
Then CCCP will refine that objective with the updates above.

4 Algorithm and Implementation Details

This section describes the LDA-CCCP algorithm in more detail and gives some
practical advice, especially on avoiding local extreme values.

Table 1 gives the pseudocode for LDA-CCCP. It performs N CCCP rounds of
the CCCP algorithm. During each CCCP round it does N EM iterations corre-
sponding to the EM-algorithm, but in practise, we set N EM to one. The CCCP
algorithm assumes that during one CCCP iteration the updates are applied un-
til convergence, and only after that the next iteration of the CCCP can start.
In Appendix B we show that we do not have to perform the full minimization
in Equation (2). Any parameters that improve the CCCP optimization criteria
decrease the objective value. Hence, we can do only one EM iteration per CCCP
round.

Our implementation of LDA-CCCP finds the Lagrange multiplier L in the
function mstep single with a simple line search where the minimal possible
value for L is the maximum of values -x[i] (if the corresponding numerator
q[i] is positive), and the maximal value is the sum of all numerators q[i].

We use two heuristics to avoid local extreme values. The first heuristic modi-
fies the Dirichlet prior depending on the current iteration number so that at the
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Input:

– The corpus corpus containing triples (doc id,word id,count). The ids are as-
sumed to form a continuous range from one.

– Number of CCCP rounds N CCCP, number of EM iterations during each CCCP
round N EM, Dirichlet parameter alfa for topic distributions of documents, Dirichlet
parameter beta for term distributions of topics, number of topics NK, number of
documents ND, and number of terms NT.

Notation: pwz is an array of distributions pwz[*|z] which are arrays of values
pwz[w|z]. (pwz,pzd) is a tuple containing pwz and pzd.
Output: distributions pwz and pzd.

function lda-cccp(corpus)

Initialize (pwz,pzd) by e.g. running few iterations of the PLSA algorithm
for N CCCP times do

(pwz0,pzd0) := (pwz,pzd)

for N EM times do
(qwz,qzd) := estep(corpus,pwz,pzd)

(pwz,pzd) := mstep(qwz,qzd,pwz0,pzd0)

end for
end for
return tuple (pwz,pzd)

function estep(corpus,pwz,pzd)

qwz := NK arrays of NT zero elements
pzd := ND arrays of NK zero elements
for each triple (d,w,c) in corpus do

zwd := vector such that (zwd[z] = pwz[w|z]*pzd[z|d])

zwd := zwd/sum(zwd)

qwz[w|*] += zwd

qzd[*|d] += zwd

end for
return tuple (qwz,qzd)

function mstep(qwz,qzd,pwz0,pzd0)

for all distributions qwz[*|z] do
pwz[*|z] := mstep single(qwz[*|z],pwz0[*|z],beta)

end for
for all distributions qzd[*|d] do

pzd[*|d] := mstep single(qzd[*|z],pzd0[*|d],alfa)

end for
return tuple (pwz,pzd)

function mstep single(q,p0,alfa)

x:= vector such that (x[i]=(1-alfa)/p0[i])

L:= scalar such that (sum q[i]/(x[i]+L) = 1.0)

p:= vector such that (p[i] = q[i]/(x[i]+L))

return p

Table 1. Pseudocode for LDA-CCCP algorithm.
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beginning of LDA-CCCP the prior does not behave as badly near the edges, and
during the last iteration the prior is the Dirichlet prior. More precisely, the prior
is linearized at positions (1− i/N) times the uniform distribution, where i is the
current iteration number and N is the total number of iterations. The second
heuristic adds smoothing to probabilities zwd in the function estep: we assume
there is ca. 1% chance that a word token is generated uniformly from the known
words of the document and is assigned to a random topic for the purposes of
computing the conditional topic distribution p(z|w, d) of the word token. These
two heuristics together guarantee, e.g., that LDA-CCCP will not converge too
quickly to zeros.

We implemented LDA-CCCP in Python, and bottlenecks in computation
were written with C. Sorting the corpus based on the word id and secondarily
on the document id resulted in runtime decreases (for example, from 62 seconds
to 40 seconds). This was due to more coherent caches, because for each word
token in a document LDA-CCCP has to reference both the topic distribution
of that document and the word in all term distributions of topics. Finally, we
noticed that underflows in floating point operations caused significant runtime
increase. We addressed this by rounding each number less than 10−40 to zero.

The implementation is publicly available at http://www.cis.hut.fi/jukujala/
lda-cccp/lda-cccp.tar.bz2.

5 Empirical results

In this section we provide experimental results on the performance of the LDA-
CCCP algorithm. The aim is of this section is to give information on the quality
of the inferred topics and computational performance of the method.

5.1 Experimental setup

Data set Documents Terms Words Unique term-document pairs

Kos 3,430 6,906 467,714 353,163

NY Times 300,000 102,660 99,542,125 69,679,430

Table 2. Data set statistics.

Data sets. We performed experiments on two data sets: Kos corpus and NY
Times corpus. Both of these are available at http://archive.ics.uci.edu/ml/
machine-learning-databases/bag-of-words/. Kos is a relatively small doc-
ument collection, whereas NY Times corpus is on the same order of magnitude
what we were able to store to the main memory of the computer on which we
performed the experiments. Table 2 gives the summary statistics of the data
sets.

Algorithms/software. We compare five different software:
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– C-LDA is an implementation of the variational EM available at http://www.
cs.princeton.edu/~blei/lda-c/. Unfortunately, in C-LDA it is not possi-
ble to set the Dirichlet prior for the term distributions of topics. Instead,
C-LDA freely optimizes term distributions during each iteration. Also, NY
Times data set was too large for C-LDA.

– GibbsLDA++ [11] is an implementation of the collapsed Gibbs sampling avail-
able from http://gibbslda.sourceforge.net/.

– FastLDA [12] is an implementation of collapsed Gibbs sampling which is
faster than GibbsLDA++ but does not output topic distributions. We use it
to measure the speed of collapsed Gibbs sampling. The implementation is
available at http://www.ics.uci.edu/~iporteou/fastlda/fastldacode.
tar.gz.

– Our implementation of LDA-CCCP.
– EM algorithm implementation of PLSA that is integrated in LDA-CCCP.

Setup. We randomly split the documents in the corpus to train and test set.
The train set contains 80% of the documents and the test set contains 20% of
the documents. The models are trained with 200 iterations over all words in the
train set. Topic distributions of documents in the test set are inferred with an
EM algorithm. The parameter α of the topic distributions of documents is set
to 0.5 and the parameter β of the term distributions of topics is set to 0.01 (we
also perform additional grid searches over the parameters to verify these values).
The number of topics is set to 100.

5.2 Quality of the inferred topics

We want to know the quality of the inferred topics. Unfortunately, even defining
the quality of topics is in itself a difficult problem. Chang et al. [5] observed that
test set likelihood does not always correlate with the semantic coherence of the
topics interpreted by people. However, test set likelihood is easy to measure so
we use it. Instead of data likelihood we measure how well the topics are able
to encode test data. Hence, we encode each word in a document using term
distributions. For a word w in a document d the length l(w, d) of the encoding
is the maximum of − log p(w|d) and logW , where W is the number of terms in
the vocabulary. The idea is that topic distributions are used if they are useful
and otherwise a uniform distribution is used. We also get around the problem
that if there is a previously unknown word in the test set then we can not assign
a positive probability to it (note that even fully Bayesian methods can not deal
with unknown events). The length l(w, d) is finally divided by the number of
words in the test set times logW to give a comparison to uniform distribution.
This normalizes the quality metric to interval [0, 1].

Figures 1 and 2 present the results. On the smaller Kos data set there is
a large difference between PLSA and methods based on LDA. The results also
suggest that the Gibbs sampler converges slowly, if ever, which has been observed
before [2]. We did an additional grid search over the parameter ranges α ∈
{0.01, 0.1, 0.5} and β ∈ {0.001, 0.005, 0.009, 0.01, 0, 02, 0.05, 0.1}, but the original
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Fig. 1. Performance of algorithms during different iterations on the Kos dataset.
Smaller is better. Note that the variational EM (vEM) algorithm is not comparable to
others, because the implementation does not allow to set the Dirichlet parameter of
term distributions of topics.

Data Set / Algorithm PLSA C-LDA GibbsLDA++ LDA-CCCP

Kos 2 iterations 0.854 0.815 0.841 0.837

Kos 10 iterations 0.808 0.790 0.799 0.784

NY Times 2 iterations 0.780 NA 0.781 0.778

NY Times 10 iterations 0.750 NA 0.729 0.752

Table 3. Performance of algorithms when run for a small number of iterations. Smaller
is better.

parameters were the best for the Gibbs sampler. However, the results also suggest
that Gibbs sampling might converge faster during the first iterations, perhaps
because its updates are run sequentially. On the larger NY Times data set the
differences in accuracy were small. Smaller number of parameters per data might
provide a plausible explanation. On the Kos data set the number of parameters
per word is 2.21, whereas on the NY Times data set it is 0.40.

Note that the performance of LDA-CCCP depends on the total number of
iterations it is run, so although in these figures it converges slower during the
first iterations, nothing can be said on its performance if it is run, e.g., only ten
iterations. Hence, Table 3 shows the performance for a small number of iterations
which might be a more realistic setting for large-scale data sets.

5.3 Computational performance

We now turn our attention to the computational performance. Table 4 presents
the runtimes of the algorithms per one iteration. The runtimes exclude parsing
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Fig. 2. Performance of algorithms during different iterations on the NY Times dataset.
Smaller is better.

Algorithm / Data Set Kos NY Times

C-LDA 183.0 NA

GibbsLDA++ 0.682 176.0

FastLDA 0.572 264.6

LDA-CCCP 0.192 40.1

Table 4. The runtime in seconds of different software packages for one iteration over
the train sets.

and preprocessing of input data and are averaged over 200 iterations over the
train set.

The exact variational EM algorithm is the slowest. We did not run it on the
larger NY Times data set. Other approaches were comparable in speed. Possible
differences in runtime could be contributed to differences in implementation.
We do not know why the Gibbs sampler methods are slower than LDA-CCCP,
because the algorithms are similar, generating sufficiently random numbers is
not expensive, and there are not that many more word tokens than unique
word-document -pairs.

6 Comparison to related work

We are aware of three approaches on optimizing LDA: in their original paper on
LDA Blei et al. [4] used variational EM, Griffiths et al. [8] suggested a collapsed
Gibbs sampler algorithm, and Asuncion et al. [2] proposed an approach they
called collapsed variational Bayes. We now go through each of these approaches
and discuss how they compare to LDA-CCCP.
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The variational EM algorithm uses the EM algorithm to find a good ap-
proximation to the complete posterior distribution P with a simpler distribution
Q in which typically some variables are assumed to be independent of other. In
LDA, the approximating distribution Q is composed of Dirichlet distributions for
topic distributions p(z|d) and term distributions p(w|z), and monomial distribu-
tions for topic distributions of words in the corpus. To find a good approximation
Q, the variational EM minimizes the Kullback-Leibler divergence D(Q|P ) be-
tween the exact P and approximate Q distributions:

D(Q|P ) =
∫
Q(x) logP (x) dx−

∫
Q(x) logQ(x).

Intuitively, D(Q|P ) measures how many bits we lose by encoding items sampled
from the distribution Q with an optimal code for distribution P . Also, it has a
connection to the information retrieval concept of precision [14]. More concretely,
one possible way to phrase the parameter updates for the variational EM updates
is as follows [2]:

qnew
wdz ∝

expψ(qwz + β) expψ(qdz + α)
expψ(qz +W β)

, (3)

where qwdz was earlier defined to be the current estimate of p(z|w, d), qwz =∑
d qwdz, qdz =

∑
w qwdz, qz =

∑
w,d qwdz, and ψ(x) is the digamma function. A

problem in the updates (3) is the computational cost of computing the digamma
function. Hence, one approach is to approximate this update equation with [2]:

qnew
wdz ∝

(qwz + β − 0.5) (qdz + α− 0.5)
qz +W β − 0.5

,

which is accurate for x > 1 in ψ(x). However, because the numerator has terms
such as α − 0.5 in it the approximation performs poorly if the parameter α is
small [2].

Another approach is to use collapsed Gibbs sampling. In Gibbs sampling
all random variables in the model are sequentially re-sampled conditioned on the
current values of all other variables. In collapsed Gibbs sampling for LDA the
term distributions of topics and topic distributions of documents are integrated
away, i.e., collapsed away. The conditional topic distribution of a single word
token given all other word tokens is:

p(z|w, d) ∝ (N¬wz + β) (N¬dz + α)
N¬z +W β

, (4)

where the superscript ¬ indicates that the current word token is not taken into
account when computing the value, and the variables N are analogous to the
variables q except that they are concrete counts of tokens. Asuncion et al. [2]
noted that convergence of the test accuracy of the collapsed Gibbs sampler can be
slow even when run for a large number of iterations. Also, in theory the Gibbs
sampler can not be implemented in parallel, because each topic distribution
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depends on the values of the other random variables. If the dependence between
counts is completely ignored during one iteration over data, then the updates (4)
appear wrong: they resemble the EM algorithm updates of the PLSA algorithm
if α → 0 and β → 0 and are different if α = 1 and β = 1 which should
correspond to PLSA updates. However, in practise it is possible to parallelize
collapsed Gibbs sampler to some extent [10].

One advantage of the collapsed Gibbs sampler is the memory consumption
when the number of topics is high compared to the average number of words in
documents: collapsed Gibbs sampler requires tracking the current discrete topic
counts of documents in the corpus, whereas other approaches need to keep track
of whole topic distributions of documents.

The last approach is collapsed variational Bayes [2], which is a determin-
istic analogue to collapsed Gibbs sampler. It is derived by collapsing away the
term distributions of topics and topic distributions of documents. After that,
the remaining topic distributions of words in the corpus are treated variation-
ally and approximated with monomial distributions. The resulting variational
EM optimization contains intractable summations, so it must be approximated.
Even then, the update equations are complicated, so an approximation to these,
called CVB0, was proposed by Asuncion et al. [2]. In it the update equations
are:

qnew
wdz ∝

(q¬wz + β) (q¬dz + α)
q¬z +W β

.

The difference to the collapsed Gibbs sampler updates is that CVB0 works over
the topic distribution, whereas the collapsed Gibbs sampler randomly assigns
each word to a topic. A general difference between the collapsed methods and
other methods is that the collapsed algorithms work sequentially over the tokens
and update their variables (q¬wz, q

¬
dz, and q¬k in CVB0) after processing each

token. This causes issues with parallelization. We see that if in CVB0 the updates
are heuristically performed in parallel then the same observations apply as for
the collapsed Gibbs sampler. We implemented CVB0 updates fully in parallel
(by modifying LDA-CCCP) and their performance was not comparable to other
approaches based on LDA. On the Kos data set the performance of these parallel
updates was 0.784, the same as for PLSA.

The parallelization issues make collapsed methods difficult to implement on
computation platforms, such as MapReduce, which seek to minimize the commu-
nication between parallel jobs (Map-step of MapReduce). On them computing
the topic distribution of the word tokens must be parallel, like it is in the EM
algorithm for PLSA.

7 Conclusions

We studied the suitability of CCCP for optimizing the LDA criteria. The re-
sulting theoretical updates were intuitive in the sense that they produce sparser
models than PLSA. The most time consuming part of the LDA-CCCP is identi-
cal to computations in PLSA, thus making the approach viable for as large data
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sets as PLSA. We expect LDA-CCCP be superior to PLSA if the number of pa-
rameters is high compared to the size of data. Also, it is possible to implement
LDA-CCCP on parallel computation platforms such as MapReduce.
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A Theory on LDA-CCCP update equations

In this Appendix we derive update equations for LDA-CCCP. Let us first define
our notation. We denote by data D the word tokens in the corpus, i.e., term-
document -pairs (w, d). Topics are denoted by variable z. The parameters of the
model, e.g., distributions p(z|d) and p(w|z), are denoted by t. Now we can ab-
breviate the log-likelihood in Expression (1) to logL(D, t). Sums with subindex
w are over terms of the vocabulary, with d over documents, and with z over
topics.

Recall that EM-algorithm consists of two steps, where in the E-step we as-
sume some hidden things in the model to be fixed, which in the case of the PLSA
are the topic distributions p(z|w, d) of words in the corpus. Then we compute the
expected log-likelihood over the parameters t of the model assuming that these
topic distributions are fixed, which equals to assuming that they are generated
by the previous values for the parameters t, denoted by t′:

Q(t|t′) = EZ∼Dist(z|t′) logL(t|D,Z),

where Z indicates topic assignments to words and Dist(z|t′) is the distribution
from which they are sampled. Then in the M-step the EM-algorithm finds the
optimal values for the parameters t given the above expression:

tnew = arg max
t
Q(t|t′).

We will need an expression for L(t|D,Z) which is easy to obtain through Bayes
rule:

L(t|D,Z) =
L(D|t, Z)L(t)

L(D|Z)
.

The numerator L(D|Z) does not depend on the parameters t so we ignore it.
The log-likelihood logL(D|t, Z), where we assume topics of words to be known,
is ∑

(w,d)∈D

log p(w|Zw,d) +
∑

(w,d)∈D

log p(Zw,d|d),

where Zw,d refers to the known topic of the word w in the document d. The
expectation of logL(D|t, Z) over topics is given the by previous parameters t′

(containing distributions p′(w|z) and p′(z|d)) from which we can compute the
topic distribution q(z|w, d) of word tokens:

q(z|w, d) =
p′(w|z) p′(z|d)

p′(w|d)

Hence,

Q(t|t′) =
∑

(w,d)∈D

∑
z

q(z|w, d) log p(w|z) +
∑

(w,d)∈D

∑
z

q(z|w, d) log p(z|d). (5)
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Maximizing the above expression equals doing an optimization over the distribu-
tions p(w|z) and p(z|d). The multiplier of log p(w|z) is the sum of all term specific
probabilities q(z|w, d) in the corpus, which we will denote with the constant

qwz =
∑

(w′,d)∈D

I(w′ = w) q(z|w′, d).

Similarly we will denote by qdz the multiplier of log p(z|d), summed over all
words appearing in the document d. Equation (5) now simplifies to

Q(t|t′) =
∑
z

∑
w

qwz log p(w|z) +
∑
d

∑
z

qdz log p(z|d). (6)

Hence, given all constants qxy we have several independent optimization tasks,
because the parameters are coupled only if they are part of the same conditional
probability distribution. For example, given a particular topic z the parameters
p(w|z) over all terms w are coupled, because

∑
w p(w|z) = 1.

EM updates in PLSA. In PLSA the prior L(t) over parameters is flat, so we
can use directly Lagrange’s method to maximize the right side of Equation (6),
which gives the updates:

p(w|z) =
qwz
N(z)

and

p(z|d) =
qzd
N(d)

,

where N(z) and N(d) are the Lagrange multipliers that normalize the sums of
probability distributions to one.

EM updates in LDA. However, if the prior L(t) is the Dirichlet distribu-
tion:

logL(t) = (α− 1)
∑
d,z

log p(z|d) + (β − 1)
∑
z,w

log p(w|z),

then the maximization no longer has single maxima, because Q(t|t′) is concave
and logL(t) is convex. For example, applying Lagrange’s method to Q(t|t′) +
logL(t) and disregarding positivity constrains for probabilities gives updates of
the form

p(w|z) =
qwz + β − 1

N(z)
and

p(z|d) =
qzd + α− 1

N(d)
,

which are problematic because α − 1 or β − 1 in the numerator could result in
negative probability.

EM updates in LDA-CCCP. Now we finally derive the update equations
for LDA-CCCP. We wanted to minimize −Q(t|t′) − logL(t), where −Q(t|t′) is
convex and − logL(t) is concave. In CCCP the concave part is linearized during
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each iteration of the CCCP. Let parameters t0 denote the parameters of the
previous CCCP iteration: distributions p0(z|d) and p0(w|z). Linearized Dirichlet
prior without the constant part is then:

t · L′(t0) = (α− 1)
∑
d,z

p(z|d)
p0(z|d)

+ (β − 1)
∑
z,w

p(w|z)
p0(w|z)

.

Optimizing this together with Q(t|t′) results in the following updates:

p(w|z) =
qwz

(1− β)/p0(w|z) +N(z)
and

p(z|d) =
qzd

(1− α)/p0(z|d) +N(d)
.

B Incomplete CCCP

Recall that in CCCP a function f(x) = v(x) + c(x) is decomposed to a con-
vex part v(x) and a concave part c(x). Then one CCCP iteration consists of
computing:

xt+1 = arg min
x
v(x) + (x− xt) c′(xt). (7)

However, if we use, e.g., EM algorithm to perform the minimization, then it
seems wasteful to run the minimization until convergence. Unfortunately, we did
not find convergence results on how CCCP performs with partial optimization.
Nevertheless, the argument below is a direct implication of techniques used in
[16, 13], although is not for some reason stated explicitly in them.

Any solution xt+1 that improves Expression (7) over xt decreases the objec-
tive value f(x). To see why, note that xt+1 improves the expression on the right
side of Equation (7):

v(xt) > v(xt+1) + (xt+1 − xt) c′(xt),

Also, Jensen’s inequality on the concave c(x) implies that

c(xt+1) < c(xt) + (xt+1 − xt) c′(xt),

which is equal to:

c(xt) > c(xt+1)− (xt+1 − xt) c′(xt).

When summed together:

f(xt) = v(xt) + c(xt)
> v(xt+1) + c(xt+1)
= f(xt+1).

The claim follows.


