
Improved Algorithms for Univariate

Discretization of Continuous Features

Jussi Kujala and Tapio Elomaa

Institute of Software Systems
Tampere University of Technology

P.O. Box 553, FI-33101 Tampere, Finland
jussi.kujala@tut.fi elomaa@cs.tut.fi

Abstract. In discretization of a continuous variable its numerical value
range is divided into a few intervals that are used in classification. For
example, Näıve Bayes can benefit from this processing. A commonly-
used supervised discretization method is Fayyad and Irani’s recursive
entropy-based splitting of a value range. The technique uses mdl as a
model selection criterion to decide whether to accept the proposed split.

We argue that theoretically the method is not always close to ideal for
this application. Empirical experiments support our finding. We give a
statistical rule that does not use the ad-hoc rule of Fayyad and Irani’s
approach to increase its performance. This rule, though, is quite time
consuming to compute. We also demonstrate that a very simple Bayesian
method performs better than mdl as a model selection criterion.

1 Introduction

A common way of handling continuous information —such as weight and volume

of an object— in classifiers is to discretize the variable’s value range. Discretiza-
tion produces typically disjoint intervals that mutually cover the continuous
value range of the attribute. Some classifiers, like Näıve Bayes (NB), actually
prefer information that composes of parts that have only few possible values [1,
2]. We consider the supervised setting; i.e., a learning algorithm has access to a
labeled training set S = { (x1, y1), . . . , (xn, yn) }, where instance xi is composed
of the feature values and yi is the class label of example i. Univariate approaches
consider one independently measured attribute at a time, while multivariate ap-
proaches take several (usually all) attributes into account simultaneously.

The literature on discretization algorithms is vast (see e.g., [1, 3–5] and the
references therein). Many univariate and multivariate discretization algorithms
have been proposed. Fayyad and Irani’s [6] entropy-based discretization algo-
rithm is arguably the most commonly used supervised discretization approach.
In addition to entropy calculation the method also takes advantage of the mini-

mum description length (mdl) principle, so we will call this algorithm ent-mdl.
The main reasons for the success of ent-mdl are probably its comprehensibility
and quite good performance. The other most popular discretization techniques



are unsupervised approaches equal-width binning (ewb) and equal-frequency
binning [7, 8, 1].

Fayyad and Irani’s approach is based on recursive binary splitting of the
(sub)interval at the point that appears the most promising according to the en-
tropy measure. Whether to actually implement the suggested split is tested using
a mdl model selection criterion. In this paper we show that Fayyad and Irani’s
mdl rule is not optimal in discretization and that it is not sound. Replacing it
with a Bayesian criterion leads to an algorithm that work as well, if not better.
In addition, we propose a well-founded test statistic that performs very well in
practice without any ad-hoc rules attached to it. This test statistic, though, is
expensive to compute.

The remainder of this paper is organized as follows. Section 2 reviews the
background of this work — Näıve Bayesian classifier and discretization of con-
tinuous features. In Section 3 we recapitulate Fayyad and Irani’s [6] ent-mdl

algorithm in more detail and consider its theoretical and practical properties.
We then propose to replace the mdl model selection criterion with a simple
Bayesian one. Section 5 puts forward a test statistic to decide on splitting. This
approach does not need any ad hoc techniques to support it. In Section 6 we
report on an empirical evaluation of the techniques discussed in this work. The
experiments confirm that the straightforward Bayesian rule slightly outperforms
the mdl rule and the test statistic can match the performance of both of these
heuristics. Finally, Section 7 presents the concluding remarks of this paper.

2 Related Work and Approaches to Discretization

In general, a classifier associates a feature vector x with a class label y. Values in
x are information measured from an object and y is the identity of the object that
we are interested in. A discrete feature has a finite number of possible values,
while a continuous feature can attain values in some infinite totally ordered set.
For example, the weight of an object can attain values in the set of positive real
numbers R

+.

In this section we first recapitulate the Näıve Bayes classifier. It is a simple
and effective classifier for discrete features. Näıve Bayes gives us a motivation
for discretization of continuous features. We, then, briefly review previous work
on discretization.

2.1 Our Motivation: Näıve Bayes Classifier

Näıve Bayes classifier uses the training set to infer from the given features x the
label y we want to know. It assumes that the feature-label pairs (x, y) in the
training set have been generated independently from some distribution D. NB
takes advantage of Bayesian inference in labeling:

P(y | x) ∝ P(x | y)P(y) .



The näıvity in NB is to assume that different features in x = (x1, . . . , xd) are
statistically independent given the class:

P(x | y) = P(x1, . . . , xd | y) ≈ P(x1 | y) · · ·P(xd | y) .

This simplification enables it to avoid the curse of dimensionality, the fact that
the number of samples needed to estimate a joint distribution of several features
grows exponentially in their number. Under the independence assumption we
only estimate the marginal distribution of each feature, and these densities do
not depend on the number of features. The trade-off is that the independence is
unlikely to hold which may lead to decreased accuracy in classification.

The empirical performance of Näıve Bayes classifier has, nevertheless, been
shown to be good in several experiments [1, 9]. It appears that the assumption
that features are independent does not necessarily hinder the performance even
when false [10]. Domingos and Pazzani [11] have argued why this is so.

2.2 Related Work on Discretization

Näıve Bayes needs to know for each feature xi the probability of attaining a
particular value v, P(xi = v | y). For discrete features the conditional probability
can be easily estimated from the training set by counting the number of labels
y for which it holds that xi = v. For continuous features it is an interesting
question how to choose these probabilities given the training set. This problem
has attained significant attention. For a comprehensive survey of the associated
research see [3]. Here we only review work that is most related to ours.

For a classifier the most fundamental aim of discretization is to place the
interval borders so that its predictive power is good on yet unseen examples.
In discretization we could consider all features simultaneously and, for example,
minimize the empirical error rate on the training set. Unfortunately multidimen-
sional empirical error minimization is NP-complete [12–14] although polynomial
time approximation algorithm exists [14, 15]. In general the methods for multi-
variate discretization are computationally expensive.

Hence simpler univariate discretization methods are actually used. Moreover,
Näıve Bayes is in some sense inherently univariate, because of the assumption of
the statistical independence between features. For example, Figure 1(b) demon-
strates a situation in which neither of the available attributes can clarify class
distribution and multivariate discretization would be beneficial. However, Näıve
Bayes cannot take advantage of multivariate discretization because the marginal
distributions are mixed.

Early continuous feature handling in NB assumed that each feature conforms
separately to some probability distribution —e.g., normal distribution [16]. The
necessary parameters were then estimated from the training set. However, some-
times features are not distributed as assumed and then the performance suffers.
A continuous feature can be binned to intervals of equal width, reducing the
continuous-valued estimation to a discrete one. From a statistical point of view
this models a continuous feature with a piecewise uniform distribution, where



Fig. 1. The class labels are + and x. Subfigure a) shows how ewb can make suboptimal
choices and b) depicts a case where univariate methods fail. Näıve Bayes cannot either
take advantage of the best split in this case. In situation c) empirical error minimization
fails to distinguish between two adjacent distributions, because their majority class is
the same.

each uniform distribution corresponds to an interval. This is more flexible than
using a more limited distribution, especially if the number of intervals can de-
pend on the training set.

Figure 1(a) demonstrates that the unsupervised ewb is sometimes subopti-
mal. There is a slight performance drop if the label distribution suddenly changes
“within an interval”. Hence several methods have been invented to place the in-
terval borders in a more intelligent way [7, 17, 5].

Catlett [8] proposed to apply recursive partitioning based on entropy of the
observed label distribution of a discretized feature. Intuitively the entropy mea-
sures the amount of randomness of a source producing random items. In this
approach an interval is split at a point that results in minimum entropy. For-
mally, let P̂I(yi) be the empirical probability of observing the label yi on interval
I; i.e., the ratio of labels yi to all labels in the interval I. Then the entropy of
the label distribution on I is defined as:

H(I) =
∑

yi

P̂I(yi) log2

1

P̂I(yi)
,

where the sum is over all labels. The entropy of the label distribution on a feature
is the sum over all intervals:

H(S) =
∑

I

|I|

|S|
H(I),

where |I| is the number of examples in the interval I and |S| is the total number
of examples in the training set S.

Several heuristic rules were used to decide when to stop the recursive parti-
tioning in Catlett’s [8] approach. In ent-mdl Fayyad and Irani [6] proposed to
use a single mdl-based stopping rule. We proceed to review ent-mdl in more
detail. It is based on modeling the assumed true distribution on a feature as
accurately as possible. This is in contrast to the empirical error minimization,



which must be regulated, e.g., by restricting the number of final intervals and can
lose information of the distribution. The problem with error-based discretization
is that it cannot separate two adjacent intervals that have the same majority
class, even though it might be beneficial for further processing in a classifier (see
Figure 1(c)) [18].

3 Fayyad and Irani’s Recursive Discretization: ent-mdl

For a given training set we have two somewhat distinct problems:

1. How many intervals to use?
2. How to place the intervals?

ent-mdl uses a mdl criterion to answer the first question and entropy to answer
the second one. Minimizing the entropy of the label distribution for a fixed
number of intervals yields a discretization in which, intuitively, the empirical
label distribution is as unsurprising as possible. However, no efficient method
for minimizing entropy for a feature is known. ent-mdl uses a heuristic: given
an interval it splits it at the point that minimizes the joint entropy of the two
resulting subintervals. This heuristic is applied recursively. To address the issue
of the total number of intervals Fayyad and Irani suggest that a test be done
whether to actually execute a split.

This test solves a model selection problem where the candidate models are:

M0 labels on the interval are generated independently from the same distribu-
tion.

Mi there is a distribution for the instances up to the index i, i > 0, and a separate
one for the instances after that. The labels are generated independently.

In this case a model Mi that splits the data has always more explanatory power
on the training set than M0 which refrains from splitting. This behavior is an
example of overfitting, because a more complicated model can fit the training
data very well, but may not have any predictive power on instances it has not
seen. ent-mdl uses mdl to choose the model. In short, mdl selects the model
that makes it possible to compress the data — in this case the class labels — the
most. The compression used in ent-mdl is a two part code. The first part codes
the model and the second part codes the data.

More precisely, Fayyad and Irani encode the data on any interval with ap-
proximately |I|H(I) bits using an optimal code [19]. Then the model M0 is
encoded with k H(I) bits, where k is the number of labels on the interval I.
Thus, the total bit length of the data and the model is

(|I| + k)H(I).

Similarly the models Mi, i > 0, are encoded with

k1H(I1) + k2H(I2) + log2(3
k − 2) + log2(|I| − 1)

bits, where I1 is the first subinterval and k1 is the number of distinct labels on
it. I2 and k2 are defined similarly. The additional terms follow from the fact that
there are two intervals.



3.1 Theoretical and Empirical Properties of ent-mdl

The code lengths proposed by Fayyad and Irani [6] do not derive from real
codes, because for example we cannot encode the model M0 within the bits
given. They suggest that M0 is sent for example as a codebook for a Huffman
code that codes each label individually. First, the expected code word length
H(I) for a label is different from the usual arithmetic average of the code word
lengths. For example, if we have two labels with codes 1 and 0, i.e., two bits,
and the probability of the former is 0.9, then kH(I) ≈ 0.94. Second, if the item
labels are coded individually, then the sum of the code word lengths for the data
can be |I| bits greater than |I|H(I), because there are no fractional bits.

Instead we need to use a non-universal nearly optimal code for sequences,
like the arithmetic code or a Huffman code that encodes sequences, and these
codes in general need to know the probabilities on the labels. For |I| items and
k labels there are

P =

(
|I| + k − 1

k − 1

)

different sets of probabilities (the number of ways we can allocate |I| items to k
bins). Hence, on average a single set of probabilities takes log2 P bits. This, then,
is a lower bound for the length of the model M0 unless we have some additional
a priori knowledge on the probabilities or use an approximation of the model
M0.

In general, a problem with the accurate use of two part mdl is that the user
is relied on giving the code, and an optimal code for the application may be
difficult to come up with.

The performance of ent-mdl increases if it splits the range of a given feature
at least once. We call this property autocutting and denote this method by ent-

mdl-a. It is unclear to us whether Fayyad and Irani [6] meant that autocutting
should be always done with ent-mdl. Clearly, if the rule used to determine
whether to split were approximately optimal, then this kind of behavior would be
unnecessary. In Section 6 (Tables 1 and 2) we see that autocutting is empirically
beneficial, because it increases the average prediction accuracy and the increase
is statistically significant in four test domains. Furthermore, the average accuracy
does not decrease significantly in any of our test domains.

Let us give an example of a situation in which ent-mdl makes a wrong
choice.

Example 1. Let an interval I have n examples that have binary class —either
0 or 1 — and there are equal numbers of instances from both classes. The first
half I1 of I contains 30% of the 1s and the second half I2 contains 70% of them.
The entropies of these intervals are H(I) = 1 and H(I1) = H(I2) ≈ 0.88. Let
H0 be the hypothesis that the labels I are generated uniformly and H1 the
hypothesis that the distribution changes at some point; i.e., we should split.
ent-mdl chooses H0 if the following holds:

(
1 +

2

n

)
n < 2 · 0.88 ·

n

2

(
1 +

2

n/2

)
+ log2(n − 1) + log2(7).



If we use accurate values then if n > 91 ent-mdl chooses to split, and does
not split when n = 91. The probability that there is at least this discrepancy
between entropies H(I) and H(I1), H(I2) is approximately of the order 0.35%
if H0 is true with the label probabilities approximated from the empirical label
frequencies. We estimated this probability by generating 100 000 intervals of the
length n from H0 and computing the entropies of the intervals according to H0

and H1. Note that H1 always chooses the best split for the given generated labels.
We then compared the difference of these entropies to those from the original
data. In only 353 cases the difference was larger. Hence we should not choose
H0, because the labels are not typical for it when compared to the hypothesis
H1. This example is also valid if we consider mdl where the rule is based on a
real code, as discussed above.

Note that we implicitly assume that we can approximate the real H0 with
the one estimated from the item labels on the interval I. This does not affect
our results to a great extent, because H0 is a simple hypothesis, hence it overfits
only slightly. We also tested altering the frequencies for H0 and observed that
the results were the same.

In experiments this kind of case appears to happen for example in the UCI
Bupa Liver Database. For this domain a decrease of 6.2 percentage units in
prediction accuracy results when ent-mdl is used instead of ent-mdl-a. We
verified this behavior by manually checking for this domain that mdl did not
split when it really should have.

4 Simple Bayesian Methods in Discretization: ent-bay

Let us study replacing the mdl criterion used in ent-mdl with a Bayesian
method. Bayesian model selection is a well known and much used tool. It uni-
fies formal reasoning and intuitive prior knowledge of the user in a convenient
manner. Given models M0, . . . , Mn the Bayesian approach selects the model Mi

that maximizes the posterior probability of having generated the data S:

P(S | Mi)P(Mi) ,

where P(Mi) is the a priori probability of the model Mi given by the user. Two
part mdl can be seen as a special case of the Bayesian approach in which P(Mi)
is obtained from the code length for the model Mi.

In our case, the model M0 corresponds to the no-split decision and models
Mi with i > 0 correspond to the cases where the interval is split at instance with
index i. We can, of course, set the priors in several ways. In subsequent empirical
evaluation we study the following straightforward way. We assign a prior 0.95 to
M0 and the remaining probability mass is divided evenly to the other models.
We call this method ent-bay95.

Having to assign the priors is both an advantage and a drawback. Priors offer
flexibility, because they are intuitive and user can set them according to the needs
of the problem. On the other hand, there are no true priors and selecting them



can be a nuisance. It is worth noting that Fayyad and Irani [6] too consider
a Bayesian test, but prefer mdl, because they view the selection of priors to
be too arbitrary. We show in our empirical studies that the simple prior given
above performs well in all tested problems. Thus, it can be used if the user does
not wish to select the prior himself. If the user chooses to customize the prior
distribution, then we presume that the results would be even better.

5 Using a Test Statistic to Decide on the Splits

A problem with the discretization schemes described above is that they can be
improved with the ad-hoc technique of autocutting. This means that when used
as such the schemes do not work as well as they should.

We demonstrate an alternative approach to decide whether to split: using
a test statistic derived from the data. In statistics using such an approach is
a standard method. In Section 6 we see that this approach works better than
the previous discretization methods without autocutting. In discretization a χ2-
distributed test statistic has been used in the ChiMerge algorithm to decide
whether to merge adjacent intervals together [20]. We give a test statistic which,
when H0 is approximately true, tells us how likely it is that the best split pro-
duces H1. If we find the situation unlikely, then we can reject H0 and execute
the split. We call this method ent-test.

The test statistic is derived as follows. Denote the labels on the current
interval with a vector y. Let P(y | H0(y)) be the probability of generating y

according to hypothesis H0 when the parameters are estimated from y itself.
Similarly let P(y | H1(y)) be the probability according to H1. Now we need to
know the probability of obtaining a pair 〈P(y′ | H0(y

′)) ,P(y′ | H1(y
′))〉, where

y
′ ∼ H0, that is less likely than the actual pair 〈P(y | H0(y)) ,P(y | H1(y))〉.

We have two problems:

1. How to generate y
′ ∼ H0 given that we do not know the exact probabilities

of the labels under the null hypothesis H0?
2. How to define “less likely”?

We answer these questions by approximating that H0 is a permutation on the
class labels that we have seen. Because H0 is a very simple hypothesis this es-
timation from the empirical data is likely to be close enough to the “truth”
for our purposes and additionally P(y′ | H0(y

′)) becomes a constant. Then
we only need to compute

∑
y′∈Y ′ P(y′), where Y ′ is the set of y

′s such that
P(y′ | H1(y

′)) < P(y | H1(y)) and P(y′) is the probability of y
′ according to

H0. Unfortunately we do not know how to solve this problem efficiently. We
resort to sampling from H0, i.e., generating vectors of data y

′ from H0. This is
expensive, because we need to generate many vectors if we want to remove the
effect of randomness from sampling.

Of course, this method gives a likelihood value and in empirical experiments
we need to decide how small the likelihood value can be before splitting. In
experiments we chose to split if the likelihood was below 10%. The number of



samples drawn from H0 was fifty. The results of these experiments are given
in Table 1 and Table 2. We can see that the significance value of 10% gives a
good performance with respect to ent-mdl. It is worth noticing is that ent-

test does not depend on autocutting to improve the performance. However,
unless we can do the significance test efficiently, this method is limited to cases
in which enough computational power is available to handle the sampling. It is
an interesting open question whether a more efficient method to calculate the
likelihood exists.

Why do we use such a complicated distribution? We could assume the number
of a particular label in a partitioned interval to be normally distributed. Its
parameters could, then, be taken from the unpartitioned interval. We can use
the normal distribution, because it approximates quite well the multinomial one,
which is the real distribution for the number of labels when the number of trials
is fixed. Then these normally distributed values for both subintervals could be
joined to form a variable that is χ2-distributed; i.e., it is a sum of normalized
normally distributed values squared. However, there is a flaw in this approach.
The problem is that this works for a split that is in a fixed location on the interval,
but in our case the hypothesis H1 selects the one that is the best according to
its criteria. Hence, the numbers of the different labels do not conform to our
assumption on their distribution.

An alternative approach to a test statistic is to simply use a test set. Un-
fortunately, in empirical tests this approach did not perform well. As the small
number of samples in small intervals is probably to blame, the k-set validation
could be more useful. However, we have not experimented with this approach
yet.

6 Empirical Evaluation

We evaluate ewb, ent-mdl, ent-bay, and ent-test on 16 domains from the
UCI machine learning repository. Also versions of ent-mdl and ent-bay that
carry out autocutting are included in this comparison. For each domain we ran-
domly split the data to a training set and test set, with two-thirds being in the
training set and the rest in the test set. We iterate the procedure thirty times
for each domain. For an interval I the probability P(I | y) was estimated using
Laplacian correction; i.e., each interval has one additional training example with
label y.

The average prediction accuracies are given in Table 1 and statistical signif-
icance tests using t-test1 with confidence level 0.95 are in Table 2. From these
results we see that autocutting benefits both ent-mdl and ent-bay. The re-
sulting increase in average accuracy over all 16 test domains is 0.8 percentage
units for ent-mdl and 0.6 percentage units for ent-bay. Unsupervised ewb is
the clear loser in these experiments, but still it is able to win in some domains.

1 The assumptions behind the t-test are violated and as Dietterich [21] argues this can
result in inaccurate significance measurements. However, we also used the Wilcoxon
signed-rank test, which has fewer assumptions, and the results were identical.



Table 1. Performance of discretization algorithms on Näıve Bayes. The average clas-
sification accuracy over 30 repetitions of randomized training set selection for 16 UCI
domains is shown. Also the average over all 16 domains is given.

ewb mdl mdl-a bay95 bay95-a test-10%

Iris 94.5 94.0 93.5 93.9 94.0 94.7
Glass 60.7 63.7 67.3 68.8 69.4 69.0
Bupa 61.6 57.1 63.3 57.4 62.2 60.0
Pima 75.0 74.7 74.1 75.5 74.5 74.2
Ecoli 83.5 84.9 85.0 85.9 85.5 84.9
Segmentation 79.0 81.3 84.0 81.6 83.2 82.3
Wine 97.1 98.3 98.3 98.3 98.3 98.1
Australian 85.2 85.3 85.0 85.2 85.7 85.5
German 71.8 71.9 73.2 71.4 73.9 74.7
Iono 85.9 89.8 89.2 90.3 88.3 89.8
Sonar 74.4 75.1 75.4 74.4 77.8 75.6
Wisconsin 97.4 97.6 97.4 97.6 97.5 97.4
Letter 61.2 73.6 73.6 73.5 73.6 73.5
Abalone 58.0 58.7 58.3 58.4 58.2 58.4
Vehicle 60.1 58.4 59.2 61.7 61.4 62.0
Page 92.3 93.4 93.4 93.4 93.5 93.2

Average 77.4 78.6 79.4 79.2 79.8 79.6

In these ones the numerical values of attributes are probably important. The
inefficient ent-test is better than pure ent-mdl or ent-bay, and performs
approximately the same when autocutting is factored in. It also has the least
number of statistically significant losses against the other algorithms. The two
entropy-based approaches ent-mdl and ent-bay have quite similar overall per-
formance. However, ent-bay is slightly better than ent-mdl and wins more
often against ewb.

7 Conclusions

In this paper we discussed the flaws in the theoretical justification of Fayyad and
Irani’s [6] entropy-based recursive discretization algorithm. The mdl criterion
used to stop the recursive partitioning is not based on real codes. We proposed
to replace the mdl criterion with an extremely simple Bayesian model selection
criterion. In empirical evaluation the Bayesian approach has similar, though,
slightly better overall performance than the mdl approach. Of course, the suc-
cess of discretization algorithms varies from domain to domain. The Bayesian
approach has the advantage of being simpler than the mdl approach and, fur-
thermore, can be easily customized by the user.

We also put forward a test statistic to decide on partitioning. This approach
does not need heuristic techniques to improve its performance like the other
entropy-based techniques do. Empirical evaluation shows this approach to have



Table 2. Number of statistically significant wins using the t-test with 0.95 confidence
level. The figure in a cell denotes the number of wins (out of 16) that the discretization
algorithm mentioned on the row obtains with respect to the one on the column.

ewb mdl mdl-a bay95 bay95-a test-10%

ewb • 2 2 1 0 0

mdl 5 • 0 0 1 0

mdl-a 8 4 • 3 0 1

bay95 8 2 2 • 1 1

bay95-a 9 5 2 3 • 0

test-10% 9 4 2 2 1 •

a comparative performance with the heuristic approaches, but unfortunately it
is expensive to compute.

In this work we have demonstrated that better working new efficient heuris-
tic approaches to discretization and (inefficient) well-founded approaches can
be developed. In the long run would be interesting to find solutions to the dis-
cretization problem that are at the same time efficient and theoretically justified.

Acknowledgments

This work has been financially supported by Tampere Graduate School in In-
formation Science and Engineering (TISE), Academy of Finland, and Nokia
Foundation.

References

1. Dougherty, J., Kohavi, R., Sahami, M.: Supervised and unsupervised discretization
of continuous features. In Prieditis, A., Russell, S., eds.: Proc. 12th International
Conference on Machine Learning, San Francisco, CA, Morgan Kaufmann (1995)
194–202

2. Hsu, C.N., Huang, H.J., Wong, T.T.: Implications of the Dirichlet assumption
for discretization of continuous variables in naive Bayesian classifiers. Machine
Learning 53 (2003) 235–263

3. Liu, H., Hussain, F., Tan, C.L., Dash, M.: Discretization: An enabling technique.
Data Mining and Knowledge Discovery 6 (2002) 393–423

4. Yang, Y., Webb, G.I.: A comparative study of discretization methods for naive-
Bayes classifiers. In: Proc. Pacific Rim Knowledge Acquisition Workshop (PKAW).
(2002) 159–173

5. Elomaa, T., Rousu, J.: Efficient multisplitting revisited: Optima-preserving elim-
ination of partition candidates. Data Mining and Knowledge Discovery 8 (2004)
97–126

6. Fayyad, U.M., Irani, K.B.: Multi-interval discretization of continuous-valued at-
tributes for classification learning. In: Proc. 13th International Joint Conference
on Artificial Intelligence, San Francisco, CA, Morgan Kaufmann (1993) 1022–1027



7. Wong, A., Chiu, D.: Synthesizing statistical knowledge from incomplete mixed-
mode data. IEEE Transactions on Pattern Analysis 9 (1987) 796–805

8. Catlett, J.: On changing continuous attributes into ordered discrete attributes. In
Kodratoff, Y., ed.: Machine Learning —EWSL-91, Proc. 5th European Working
Session on Learning. Volume 482 of Lecture Notes in Computer Science., Berlin,
Heidelberg, Springer-Verlag (1991) 164–178

9. Hand, D.J., Yu, K.: Idiot Bayes? not so stupid after all. International Statistical
Review 69 (2001) 385–398

10. Rish, I.: An empirical study of the naive Bayes classifier. In: IJCAI-01 workshop
on “Empirical Methods in AI”. (2001)

11. Domingos, P., Pazzani, M.: On the optimality of the simple Bayesian classifier
under zero-one loss. Machine Learning 29 (1997) 103–130

12. Chlebus, B.S., Nguyen, S.H.: On finding optimal discretizations for two attributes.
In Polkowski, L., Skowron, A., eds.: Rough Sets and Current Trends in Computing,
Proc. First International Conference. Volume 1424 of LNAI., Heidelberg, Springer
(1998) 537–544

13. Elomaa, T., Rousu, J.: On decision boundaries of näıve Bayes in continuous
domains. In N. Lavrač et al., ed.: Knowledge Discovery in Databases: PKDD
2003, Proc. 7th European Conference. Volume 2838 of LNAI., Berlin, Heidelberg,
Springer-Verlag (2003) 144–155

14. Călinescu, G., Dumitrescu, A., Karloff, H., Wan, P.J.: Separating points by axis-
parallel lines. International Journal of Computational Geometry & Applications
15 (2005) 575–590

15. Elomaa, T., Kujala, J., Rousu, J.: Approximation algorithms for minimizing em-
pirical error by axis-parallel hyperplanes. In J. Gama et al., ed.: Machine Learning:
ECML 2005, Proc. 16th European Conference. Volume 3720 of LNAI., Berlin, Hei-
delberg, Springer-Verlag (2005) 547–555

16. John, G., Langley, P.: Estimating continuous distributions in Bayesian classifiers.
In: Proc. 11th Annual Conference on Uncertainty in Artificial Intelligence, San
Francisco, CA, Morgan Kaufmann (1995) 338–345

17. Fayyad, U.M., Irani, K.B.: On the handling of continuous-valued attributes in
decision tree generation. Machine Learning 8 (1992) 87–102

18. Kohavi, R., Sahami, M.: Error-based and entropy-based discretization of continu-
ous features. In Simoudis, E., Han, J.W., Fayyad, U., eds.: Proc. 2nd International
Conference on Knowledge Discovery and Data Mining, Menlo Park, CA, AAAI
Press (1996) 114–119

19. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons,
New York, NY (1991)

20. Kerber, R.: Chimerge: Discretization of numeric attributes. In: Proc. 10th National
Conference on Artificial Intelligence, Cambridge, MA, MIT Press (1992) 123–128

21. Dietterich, T.G.: Approximate statistical test for comparing supervised classifica-
tion learning algorithms. Neural Computation 10 (1998) 1895–1923


