
The Cost of Offline Binary Search Tree

Algorithms and the Complexity of the Request

Sequence

Jussi Kujala∗, Tapio Elomaa

Institute of Software Systems
Tampere University of Technology

P. O. Box 553, FI-33101 Tampere, Finland

{jussi.kujala,tapio.elomaa}@tut.fi

Abstract

In evaluating the performance of online algorithms for search trees,
one wants to compare them to the best offline algorithm available. In
this paper we lower bound the cost of an optimal offline binary search
tree using the Kolmogorov complexity of the request sequence. We
obtain several applications for this result. First, any offline binary
search tree algorithm can be at most a constant factor away from the
entropy of the process producing the request sequence. Second, for
a fraction 1 − 1/2m of request sequences of length m on n items the
cost of any offline algorithm is Ω(m(log n − 1)). Third, the expected
cost of splay trees is within a constant factor of the expected cost of
an optimal offline binary search tree algorithm in a subset of Markov
chains.

Keywords: Offline binary search tree algorithms, Kolmogorov complexity,
Splay trees

∗Corresponding author, Phone: +358 3 3115 3731, Fax: +358 3 3115 2913

1

1 Introduction

Binary search trees (BSTs) are one of the most fundamental data structures
that allow efficient access and update operations to the stored items. They
store keys from some totally ordered set and maintain them in symmetric
order by reorganizing the tree, when required, using rotations. Through
rotations one can also maintain the tree in balance in order to reduce the
search cost of an item in the BST. In their landmark paper Sleator and Tarjan
[14] showed that splaying — a particular way of updating a BST online by
rotations— also leads to many good properties without the need to maintain
explicit balancing information. Splay trees, though, cannot guarantee the
efficiency of an operation in the worst case, but achieve excellent amortized
efficiency. An alternative data structure with many of the good dynamical
properties of splay trees and with guaranteed O(log n) worst-case access time
has been proposed by Iacono [9].

The aim of an online BST algorithm is to serve a sequence of requests ef-
ficiently, without knowing it in advance, by using a BST to store the data
and rotations to restructure the tree at will. The cost of the algorithm is
a combination of its search and rotation cost: Search cost is the number of
edges traversed to reach the requested item and each rotation costs one unit
of time. The efficiency of an online algorithm is measured competitively: A
BST algorithm is said to achieve static optimality if its cost for any request
sequence never exceeds that of the best static tree by more than a constant
factor. Moreover, the algorithm has dynamic optimality if its cost is never
more than a constant times that of any offline BST algorithm, which knows
the request sequence in advance and is allowed to alter the tree.

Contrasting an online BST algorithm with an optimal offline one requires
knowing the performance of the latter in detail. However, the cost of op-
timal offline algorithms is not currently known. Our aim in this paper is
to improve this situation by providing more information on their behavior.
Obviously, the best update strategy depends on the request sequence in ques-
tion. Therefore, our analysis also takes its complexity into account.

More exactly, we consider the following problem. Given a sequence s of
access requests, possibly generated by a random process, what lower bounds
can we give for the minimum cost c(s) required by an optimal offline BST
algorithm? Our focus is on finding a lower bound for c(s) in terms of the

2

complexity of the request sequence, which we measure by its Kolmogorov

complexity C(s). We also study bounding c(s) below by the entropy of an
assumed request generating process. Some random processes may generate
any request sequence possible, albeit with very small probability. Therefore,
we are not able to bound the cost for all sequences generated by a random
process. Instead, we bound the expected cost of the offline algorithm with
regards to entropy of the request generating process. Throughout this paper
we assume that the number of items stored in a BST is n.

Wilber [16] gave two methods for computing a lower bound for c(s). He
showed that the cost of an optimal offline algorithm for the bit reversal
permutation is Θ(n log n), where n is both the number of items in the tree and
the length of the request sequence. Wilber also gave a bound for the expected
cost of sequences generated by independent and identically distributed (i.i.d.)
stochastic processes. In particular, he showed that for a sequence

s = s1, s2, . . . , sm

with m accesses, each generated i.i.d. with probability pi for the ith item, it
holds that

E (c(s)) ≥
m

3

(

1 +
n
∑

i=1

−pi log pi

)

= Ω (mH (Xi.i.d.)) , (1)

where H(Xi.i.d.) =
∑

n

i=1 −pi log pi is the entropy of a process producing one
random access.1 However, Wilber’s methods are not easy to use in relating
c(s) to the complexity of a sequence or the entropy of a process in which
accesses may depend on each other.

Sleator and Tarjan [14] showed that splaying leads, among many other good
properties, to static optimality. They also conjectured that splay trees would
have dynamic optimality. This Dynamic Optimality Conjecture is still an
open problem, which has inspired a lot of work on splay trees. Note that the
result of Wilber [16] together with Static Optimality Theorem [14] implies
that under expected cost splay trees are constant competitive with an optimal
offline BST algorithm in the class of i.i.d. processes. This, of course, is a
necessary condition for dynamic optimality of splay trees to hold.

Blum, Chawla, and Kalai [2] were able to show that there exists an inefficient
online BST algorithm, which has so-called dynamic search-optimality : its

1All logarithms in this paper are taken to have base 2.

3

search cost without the cost of rotations for any sequence is a constant factor
away from the total cost of any offline algorithm. This is another necessary
prerequisite for Dynamic Optimality Conjecture to hold.

Demaine et al. [7] present an online BST algorithm that is O(log log n)-
competitive with respect to the best offline algorithm. Their result is the first
one that is better than the trivial O(log n)-competitiveness bound achieved
by balanced search trees. The algorithm relies on Wilber’s first bound.

Munro [13] has studied self-organizing lists and observed that the cost of
the best offline list algorithm is within a constant factor of the empirical
entropy of the request distribution. He also considered whether an offline
BST algorithm could beat the entropy bound by more than a constant factor,
which would lead to a counterexample to Dynamic Optimality Conjecture.
In this paper we refute this possibility under the expected cost of an offline
BST algorithm.

1.1 Our Results

In this paper we prove that c(s) = Ω(C(s)), where C(s) is the Kolmogorov
complexity of the sequence s. Using this result we obtain a lower bound for
the expectation of the cost in terms of the entropy of the assumed request
generating stochastic process:

E (c(s)) = Ω(H(X)) ,

where H(X) =
∑

s
−p(s) lg p(s) is the entropy of a process generating a

request sequence s with probability p(s). This generalizes Wilber’s result to
sequences in which the probability distribution on a request may depend of
the other requests on the sequence. In addition, we show that if a stationary
ergodic process repeatedly generates new requests then asymptotically the
average cost is lower bounded by the average increase in the entropy. That
is, if m is the number of requests that the process has so far generated and
Hm(X) is the entropy over these sequences with m requests, then c(s) /m
is asymptotically Ω(Hm(X)/m). Stationarity and ergodicity essentially limit
the class of probability distributions to the ones that behave well. We proceed
to prove that for a fraction 1 − 1/2m of possible request sequences of length
m the following bound holds: c(s) = Ω(m log n−m). The significance of this
result stems from the fact that m log n is the worst case cost of a balanced

4

search tree serving a sequence s. We then modify the fraction to 1−1/2c m log n

to have c(s) = Ω(c m log n) for any c, 0 ≤ c ≤ 1.

As examples of implications of these results we show the following:

• The expected competitive ratio of any balanced search tree with respect
to an optimal offline algorithm is O(Hmax(m, n)/Hm(X)). Hmax(m, n) =
m log n is the maximum entropy achievable by a stochastic process that
generates a sequence of length m on n items. Hm(X) is the actual en-
tropy of the stochastic process that generates the request sequence with
m requests.

• The expected cost of splay trees is a constant times that of an op-
timal offline algorithm in a subset of stationary Markov chains with
conditional probabilities satisfying p(i | j) ≤ 1/

√

1 + |i − j|.

A further technical contribution is that r rotations, which rotate edges that
form a subtree including the root, can be described with 5r bits, thus, tight-
ening slightly the previously known best result 6r [2].

Together these results deepen the understanding of the limits of an optimal
offline BST algorithm. They are particularly helpful if the request sequence
is modeled stochastically— which is often the case— as they show that no
offline algorithm can beat the entropy of the stochastic process. In order to
prove the competitiveness of an online BST algorithm with an optimal offline
BST algorithm, it suffices to prove competitiveness of the online algorithm
w.r.t. entropy. This however may be difficult and sometimes even impossible,
if the cost of the offline algorithm is greater than a constant times the entropy.
Finally, our results provide some insight to proving or disproving the dynamic
optimality of splay trees, as it is shown that splay trees perform well in a
certain class of request generating processes. Unfortunately, nothing can be
said about the worst case for splay trees.

2 Kolmogorov Complexity Preliminaries

We introduce Kolmogorov complexity and its relationship with stochastic
processes to the extent needed in this article. For a comprehensive intro-
duction to Kolmogorov complexity and the results presented here see [11].

5

A short introduction can be found, e.g., in the book of Cover and Thomas
[5]. For a comparison of Kolmogorov complexity and information theoretic
entropy see [8].

The Kolmogorov complexity of a binary string x is defined as the length of
the shortest program for a universal Turing machine that produces x. Thus,
Kolmogorov complexity depends on the universal Turing machine used. Let
C(x) denote the Kolmogorov complexity of x and l(x) be the length of x.
Counting all possible programs of length l(x) − c shows that for a fraction
1 − 1/2c of strings of length l(x) the following must hold:

C(x) ≥ l(x) − c. (2)

If we assume that x is generated by a stochastic process then an interesting
connection between C(x) and properties of the stochastic process has been
proved [11]. Prefix Kolmogorov complexity K(x) is actually required to
formulate the connection. K(x) is defined as the length of the shortest prefix-
free program for producing x. Informally this means that the programs
form a prefix code. This is not a crucial difference, since one can always
catenate the length of the program in self-delimiting form in front of the
program, hence, achieving C(x) ≤ K(x) ≤ C(x) + 2⌈log l(x)⌉ + 2. Define
a stochastic process by probability distribution on binary strings, i.e., each
x has a probability p(x) of being generated. The following formula relates
the Kolmogorov complexity and the entropy H(X) of the stochastic process
producing a binary string x:

E (K(x)) =
∑

x

p(x)K(x) ≥
∑

x

−p(x) log p(x) = H(X). (3)

The inequality follows from the fact that the set of prefix-free programs form
a prefix code and, thus, the lengths of such programs must obey Shannon’s
classical entropy bound.

Inequality 3 can be applied to the case where we generate m i.i.d. requests to
the set {1, . . . , n} of items with probability pi for item i. Associate to each
generated sequence with m requests a different binary code word x:

E (K(x)) ≥ H(X) = mH(Xi.i.d.) = m

n
∑

i=1

−pi log pi,

6

where H(Xi.i.d.), again, is the entropy of the process producing a single i.i.d.
request.

A lower bound holding always is, of course, preferable to one that holds under
expected value, as probability might not be concentrated around the expected
value. It is possible to remove the expected value and obtain an asymptotic
lower bound by limiting the set of probability distributions to the ones that
are ergodic and stationary. These limitations allow us to work around the
expected value, but still let the sequence generating processes to produce
items that depend on each other, i.e., like working sets [1] do. Intuitively
(strong) stationarity means that without knowing the other items in the
sequence, each item is distributed identically. Informally, an ergodic process

is one in which knowledge of the present state does not help to estimate
where the process is going to be in distant future. For exact definitions see,
e.g., [5].

Let us recall the asymptotic equipartition property for ergodic processes (see
[5, p. 61, pp. 474–479]).

Theorem 1 (The Shannon-McMillan-Breiman theorem). Assume that

a finite-valued string x = x1 · · ·xm is being generated by a stationary ergodic

process and define the entropy of the process after m generated values as:

Hm(X) =
∑

l(x)=m

pm(x) lg
1

pm(x)
,

where pm(x) is the probability of having generated x. With probability one:

lim
m→∞

−
log pm(x)

m
= lim

m→∞

Hm(X)

m
,

if the limits exist.

We also need the following lemma [5] due to Andrew Barron.

Lemma 2. Let lc(x) be codeword lengths associated with any code and p(x)
be the probability of obtaining x. Then

P (lc(x) ≤ − log p(x) − v) ≤
1

2v
.

7

Corollary 3. For a finite-valued string x produced by a stationary ergodic

process with entropy Hm(X) after m generated values the following holds with

probability one

lim
m→∞

K(x)

m
≥ lim

m→∞

Hm(X)

m
,

if the limits exist.

Proof. Lemma 2 asserts that K(x) is not much less than − log pm(x) with
high probability as K(x) is a codeword for x. More precisely, let lc(x) = K(x)
and set v = o(m), it follows that with probability 1 − 2−o(m) it holds that

K(x) ≥ − log pm(x) − o(m)

and otherwise K(x) ≥ O(1). The Shannon-McMillan-Breiman theorem
shows that − log pm(x)/m converges to Hm(X)/m, which proves the result,
because the limits are assumed to exist.

3 Offline Binary Search Tree Algorithm

Assume that there is an initial BST containing items 1, . . . , n and a sequence
s consisting of m access requests to the n items to be served. An offline BST
algorithm serves the request sequence using a BST and knows the whole
request sequence beforehand. Thus, the algorithm may rotate items in the
tree at will while serving the sequence in order to optimize its total cost.

In this paper we consider offline algorithms that rotate the searched item to
the root. It has been often noted (e.g., [16, 2]) that we lose at most a factor
of two by assuming this. If the searched item is at depth d then accessing
it costs d. On the other hand, we can bring the item to the root with d − 1
rotations, then access it at cost 1, and do the reverse sequence of rotations
to bring the item back to its original place. Hence, the total cost in this case
is 2d−1. The minimum cost for such an offline algorithm serving a sequence
s is denoted as c(s).

Strictly speaking c(s) depends on the initial tree, but the number of rotations
needed to change any n-node, n ≥ 11, BST into another is at most 2n − 6
and for all sufficiently large n this bound is tight [6, 15]. Thus, the choice of

8

the original tree has negligible cost and there is an implicit additional cost
of O(n) in the notation c(s).

In order to describe a request sequence s we can do the following. Because
the accessed item is always rotated to the root, it suffices to describe how the
BST changes in between requests. Blum, Chawla, and Kalai [2] showed that
the trees in between rotations in an optimal offline algorithm can be described
in 6c(s) bits. We provide an alternative way to code rotations between trees
using only 5c(s) bits. Because our subsequent bounds depend on the number
of bits, it is important to code rotations as concisely as possible.

Lemma 4. A request sequence s can be coded in 5c(s) bits.

Proof. Fix a request sequence s = s1, s2, . . . , sm and an offline algorithm that
serves s using BSTs T0, T1, . . . , Tm, where T0 is the initial BST and Tt is the
BST after the request st.

Lucas [12] thinks of a rotation as changing one edge either from left to right or
right to left and connecting it to different nodes. She argues that the rotated
edges during a single request st form a connected subtree of Tt−1 that includes
the root and the node accessed next. Thus, it suffices to describe this subtree
before and after rotations to describe the transformation from Tt−1 to Tt and
obtain the request st. We proceed by showing that there is a prefix-free code
such that each transformation from Tt−1 to Tt is assigned a word with length
less than 5k(t) bits, where k(t) is the number of edges in the subtree of Tt−1

that changes.

The number of possible BSTs with u nodes is given by Catalan number
Cu =

(

2u

u

)

/(u + 1) [10]. We describe the subtree that changes in Tt−1 and
how it changes by indexing into an ordered pair of BSTs. We use k(t) bits for
coding the number k(t), simply by having k(t) − 1 ones followed by a zero.
After the description of the number k(t) we put the description of the pair of
the subtrees taking ⌈log C2

k(t)+1⌉ bits. This is an index to a pair of BSTs, each

with k(t) edges. As there are Ck(t)+1 such BSTs, ⌈log C2
k(t)+1⌉ bits are enough

to index the pair. Thus the total description length is k(t) + ⌈2 log Ck(t)+1⌉
bits.

For values of k(t) smaller than 8 we can check one by one that the number
of bits is less than 5k(t). For larger values of k(t) we bound the logarithm of

9

Cu by integrals:

log Cu = log

((

2u

u

)

/

(u + 1)

)

=

2u
∑

i=u+1

log i −

u
∑

i=1

log i − log(u + 1)

≤

∫ 2u+1

u+1

log i di −

∫

u

1

log i di − log(u + 1)

≤ 2(u − 1) − 1/ ln 2 + 3 + (2u + 1) log(u + 1/2) − (2u + 2) log(u),

which is less than 2(u− 1) for all u ≥ 9. This can be verified by noting that
the derivative of the last two terms is strictly negative for u ≥ 1. Thus, for
all k(t), it holds that k(t) + ⌈2 log Ck(t)+1⌉ ≤ 5k(t).

Now for each t the transformation from Tt−1 to Tt can be coded in 5k(t)
bits. Because these codewords are prefix-free, we can catenate them to have
a description for s with 5

∑

m

t=1 k(t) bits. As the number of edges rotated is
less than the number of rotations by an optimal offline algorithm and the
cost of the sequence is more than that, it follows that the request sequence
can be coded in 5c(s) bits.

4 Analysis of an Offline Binary Search Tree

Algorithm

In this section, we lower bound c(s) in terms of the Kolmogorov complexity
of the request sequence s and in terms of the entropy of the assumed request
generating process. A request sequence s can be thought of as a binary string
sstr that codes m requests with ⌈log n⌉ bits each, thus totaling a length of
m⌈log n⌉ in bits.

Theorem 5. For all s such that m ≥ 2 log n + O(1), it holds that c(s) ≥
C(sstr)/6.

Proof. We prove the claim by describing a program that prints the request
sequence and compare the length of this program to the Kolmogorov com-
plexity of the sequence. The idea of the program is to input n, produce some

10

fixed BST with items 1, . . . , n, and use rotations to modify this tree. It was
assumed that the accessed item will always be rotated to the root, so trees in
between rotations suffice to describe the request sequence. This program for
a universal Turing machine has the number n in a self-delimiting form taking
2 log n + 2 bits, description of rotations as given in previous section takes at
most 5c(s) bits, and a constant length portion that actually does the printing
takes O(1) bits. Thus, the total length is 5c(s)+2 log n+O(1) ≤ 6c(s) assum-
ing that the length of the request sequence is comparable to 2 log n + O(1).
Note that c(s) ≥ m.

By the definition of the Kolmogorov complexity 6c(s) ≥ C(sstr), since C(sstr)
is the length of the shortest program for printing sstr.

A consequence of Equation 2 and Theorem 5 is that for a fraction 1 − 1/2c

of possible request sequences it holds that

6c(s) ≥ C(sstr) ≥ m log n − c.

Note that although sstr has a length of m⌈log n⌉ in bits, some bits are wasted
if n is not a power of two, thus there is no ceiling function on the right hand
side of the inequality. For example, when c ≥ 7 the equation holds for over
99% of possible request sequences. As further results we have the following.

Corollary 6. If c = m, then

c(s) ≥
m(log n − 1)

6

for a fraction 1 − 1/2m of request sequences of length m.

Corollary 7. By choosing c = c′m log n, for some 0 < c′ < 1, we get

c(s) ≥
(1 − c′)m log n

6

for a fraction 1 − 1/2c′m log n of request sequences of length m.

Theorem 8. Assume that the request sequence s has been generated by a

stochastic process with entropy H(X) =
∑

s
p(s) log 1/p(s), where p(s) is the

probability of generating the sequence s. Then

E (c(s)) = Ω(H(X)).

11

Proof. If s is long enough, then c(s) ≥ 2 log(m log n) + 2 log n + O(1). Thus,
6c(s) ≥ C(sstr) + 2 log(m log n) ≥ K(sstr). By linearity of expectation

E (6c(s)) ≥ E (K(sstr)) ≥ H(X),

where the last inequality follows by Equation 3. Thus, the claim follows.

Theorem 9. Assume that the request sequence s is generated by a stationary

ergodic process with entropy Hm(X) after m requests. Then with probability

one

lim
m→∞

c(s)

m
≥ lim

m→∞

Hm(X)

m
.

Proof. The proof is similar to that of Theorem 8, except that this time
Corollary 3 is used.

Note that we get Wilber’s [16] result for i.i.d. processes (Equation 1) as a
special case of Theorem 8. However, our coefficient is 1/6, while Wilber was
able to attain 1/3.

Altogether, the bounds for costs presented here are by no means tight. This
follows from the fact that Kolmogorov complexity is uncomputable [11]. If
our bounds were tight, they would provide a way to calculate Kolmogorov
complexity. To show in a practical way that Kolmogorov complexity cannot
be achieved, consider a very simple access pattern of length m where two
items alternate, e.g., 01010101010101 . . .01. The Kolmogorov complexity of
the sequence grows in log m, but an optimal offline algorithm must pay cost
that is linear in m.

5 Competitiveness of Balanced Binary Search

Trees

Balanced BSTs have a worst-case cost of m log n for any sequence. Using
Corollary 6 we can state the worst-case competitiveness of balanced BSTs
when compared to an optimal offline BST algorithm. Let us first assume that
a sequence scomplex is of high complexity, say among the fraction 1− 1/2m of
the most complex sequences of length m.

Theorem 10. Balanced search trees are constant competitive for all scomplex.

12

Proof. Let the competitiveness ratio of balanced BSTs w.r.t. the optimal
offline algorithm be D. Let the cost of a balanced BST for a sequence s be
cBAL(s). Then, from Corollary 6 and by assuming that n ≥ 4 we get:

D c(scomplex) ≥
D m(log n − 1)

6
≥ m log n ≥ cBAL(scomplex) .

The first and the last terms in this sequence of inequalities sandwich the
middle terms by definition of competitive ratio, implying that D ≤ 12.

Wilber’s [16] results imply that the cost of the offline algorithm is similar to
the cost of a balanced tree for random accesses. Theorem 10 gives a lower
bound for the relative size of a set of sequences having a high offline cost.

We can relate the entropy of a sequence generating process and the compet-
itiveness of balanced search trees using the following corollary.

Corollary 11. Let a request sequence of length m be generated by a stochastic

process with entropy Hm(X). Let Hmax(m, n) = m log n be the maximum

entropy achievable by the process. Now, the expected competitive ratio of a

balanced search tree with respect to an optimal offline algorithm is

O

(

Hmax(m, n)

Hm(X)

)

.

Proof. Theorem 8 states that 6E (c(s)) ≥ Hm(X). The claim follows by
similar argumentation as in Theorem 10.

This shows how good balanced search trees are when compared to the opti-
mal offline algorithm in terms of the simplicity of the process producing the
request sequence.

6 On the Competitiveness of Splay Trees

Because splay trees are constant competitive with balanced BSTs [14], the
results of the previous section hold also for splay trees. However, because of
the distribution sensitive properties, splay trees can sometimes do better. For
example, balanced search trees perform poorly on simple request sequences,

13

but we would expect splay trees to perform better, at least on some simple
request sequences.

In order to prove the competitiveness of splay trees for i.i.d. processes, by
Theorem 8, it is enough to prove that the expected cost of splay trees is
upper bounded by the entropy of the request generating process.

Lemma 12. The expected cost of splay trees for an i.i.d. request sequence s
of length m is O(mH(Xi.i.d.)), where H(Xi.i.d.) is the entropy of the process

producing one i.i.d. request.

Proof. The Static Optimality Theorem of Sleator and Tarjan [14] shows that
the cost of splay trees is O(m

∑

i
pi log pi) (assuming that each item is ac-

cessed at least once), where pi is the frequency of an item i. Empirical fre-
quencies converge to probabilities of the i.i.d. process under expected value.
Hence, the result follows.

Corollary 13. Under expected cost splay trees are constant competitive with

an optimal offline BST algorithm for i.i.d. processes.

One of the open problems left by Sleator and Tarjan [14] was the Dynamic

Finger Conjecture. This result was later proved by Cole [4, 3].

Theorem 14 (Dynamic Finger Theorem). The total cost of a splay tree

serving a request sequence s = s1, . . . , sm is

O

(

m
∑

i=1

log(|si − si−1| + 1)

)

.

Assume now that the sequence has been generated by a stationary Markov
chain having conditional probabilities p(i | j) ≤ 1/

√

1 + |i − j|. Let us cal-
culate the expected cost of serving a sequence s1, . . . , sm, which is generated
from a Markov chain that has run long enough to be approximately in the
stationary distribution, i.e., the request s1 is generated from the stationary
distribution. The entropy Hm(X) for m generated requests is defined as

∑

s

−p(s1, . . . , sm) log p(s1, . . . , sm).

14

Lemma 15. E (cSPLAY(s)) = O(Hm(X)) for a request sequence s = s1, . . . , sm

generated by a stationary Markov chain having conditional probabilities

p(i | j) ≤ 1/
√

1 + |i − j|

that has converged to its stationary distribution.

Proof. By Dynamic Finger Theorem

E (cSPLAY(s1, . . . , sm)) = O

(

E

(

m
∑

t=1

log(|st − st−1| + 1)

))

= O

(

m
∑

t=1

E (− log p (st | st−1))

)

= O

(

m
∑

t=1

E (− log p (st | st−1, . . . , s1))

)

= O

(

m
∑

t=1

H (Xt | Xt−1, . . . , X1)

)

= O (Hm (X)) .

The second equality follows from our assumption on p(i | j), the third equal-
ity comes from the definition of our Markov chain, the fourth is a definition
of the conditional entropy, and the final equality follows from the chain rule
of entropies.

By Theorem 8 we get a corollary:

Corollary 16. Under expected cost splay trees are constant competitive with

an optimal offline BST algorithm for Markov processes that satisfy p(i | j) ≤
1/
√

1 + |i − j|.

7 Discussion and Conclusions

In this paper we have shown that the cost of an optimal BST algorithm
is lower bounded by the complexity of the request sequence as measured
by the Kolmogorov complexity. It is theoretically satisfying to know that

15

sequences that are complex seem to cost more to serve than simple sequences.
Furthermore, this non-tight bound is able to provide us a lower bound in
terms of the entropy of the request generating process, thus generalizing the
result of Wilber [16].

This entropy bound is of limited use for two reasons. First, the cost of the
best offline algorithm is often actually worse than the entropy of the process
and, thus, the cost of an online algorithm cannot be upper bounded by the
entropy. Second, it can be extremely difficult to analyze the competitiveness
of an online algorithm in terms of the entropy of the request generating
process. Nevertheless, as demonstrated above, there are useful results that
can be obtained by these techniques.

One motivation for this work was to show that it is possible to construct
an online algorithm which is dynamically competitive by predicting next
access, in the spirit of [2]. We found that such an algorithm is possible if the
complexity of the sequence is very low, i.e., does not grow as a function of
the length of sequence, but the general case is left as an open problem.

Acknowledgments

This work has been in part supported by the Academy of Finland.

References

[1] S. Albers, L.M. Favrholdt, and O. Giel. On paging with locality of
reference. In Proceedings of the Thirty-Fourth annual ACM Symposium

on Theory of Computing, pages 258–267. ACM Press, 2002.

[2] A. Blum, S. Chawla, and A. Kalai. Static optimality and dynamic
search-optimality in lists and trees. Algorithmica, 36(3):249–260, 2003.

[3] R. Cole. On the dynamic finger conjecture for splay trees. part II: The
proof. SIAM Journal on Computing, 30(1):44–85, 2000.

[4] R. Cole, B. Mishra, J. Schmidt, and A. Siegel. On the dynamic finger
conjecture for splay trees. part I: Splay sorting log n-block sequences.
SIAM Journal on Computing, 30(1):1–43, 2000.

16

[5] T. Cover and J. Thomas. Elements of Information Theory. John Wiley
& Sons, 1991.

[6] K. Culik II and D. Wood. A note on some tree similarity measures.
Information Processing Letters, 15(1):39–42, 1982.

[7] E.D. Demaine, D. Harmon, J. Iacono, and M. Pǎtraşcu. Dynamic opti-
mality — almost. In Proceedings of the 45th Annual IEEE Symposium

on Foundations of Computer Science, pages 484–490. IEEE Computer
Society Press, 2004.

[8] P. Grünwald and P. Vitányi. Kolmogorov complexity and information
theory, with an interpretation in terms of questions and answers. Journal

of Logic, Language, and Information, 12(4):497–529, 2003.

[9] J. Iacono. Alternatives to splay trees with O(log n) worst-case access
times. In Proceedings of the Twelfth Annual ACM-SIAM Symposium on

Discrete Algorithms, pages 516–522. ACM/SIAM, 2001.

[10] D.E. Knuth. The Art of Computer Programming, 2nd Ed. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1978.

[11] M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and

Its Applications. Springer Verlag, second edition, 1997.

[12] J.M. Lucas. Canonical forms for competitive binary search tree algo-
rithms. Technical Report DCS-TR-250, Computer Science Department,
Rutgers University, 1988.

[13] J.I. Munro. Competitiveness of linear search. In Mike Paterson, editor,
ESA 2000, Proceedings of the 8th Annual European Symposium, volume
1879 of Lecture Notes in Computer Science, pages 338–345. Springer,
2000.

[14] D.D. Sleator and R.E. Tarjan. Self-adjusting binary search trees. Journal

of the ACM, 32(3):652–686, 1985.

[15] D.D. Sleator, R.E. Tarjan, and W.P. Thurston. Rotation distance, tri-
angulations, and hyperbolic geometry. Journal of the American Mathe-

matical Society, 1(3):647–681, 1988.

17

[16] R. Wilber. Lower bounds for accessing binary search trees with rota-
tions. SIAM Journal on Computing, 18(1):56–67, 1989.

18

